Ir al contenido

Documat


Computer-Aided Detection and Diagnosis of Breast Cancer: a Review

  • Sharma, Bhanu Prakash [1] ; Purwar, Ravindra Kumar [1]
    1. [1] Guru Gobind Singh Indraprastha University

      Guru Gobind Singh Indraprastha University

      India

  • Localización: ADCAIJ: Advances in Distributed Computing and Artificial Intelligence Journal, ISSN-e 2255-2863, Vol. 13, Nº. 1, 2024
  • Idioma: inglés
  • DOI: 10.14201/adcaij.31412
  • Enlaces
  • Resumen
    • Statistics across different countries point to breast cancer being among severe cancers with a high mortality rate. Early detection is essential when it comes to reducing the severity and mortality of breast cancer. Researchers proposed many computer-aided diagnosis/detection (CAD) techniques for this purpose. Many perform well (over 90% of classification accuracy, sensitivity, specificity, and f-1 sore), nevertheless, there is still room for improvement. This paper reviews literature related to breast cancer and the challenges faced by the research community. It discusses the common stages of breast cancer detection/ diagnosis using CAD models along with deep learning and transfer learning (TL) methods. In recent studies, deep learning models outperformed the handcrafted feature extraction and classification task and the semantic segmentation of ROI images achieved good results. An accuracy of up to 99.8% has been obtained using these techniques. Furthermore, using TL, researchers combine the power of both, pre-trained deep learning-based networks and traditional feature extraction approaches.

  • Referencias bibliográficas
    • Aghdam, H. H., Puig, D., and Solanas, A. (2014). Adaptive Probabilistic Thresholding Method for Accurate Breast Region Segmentation in Mammograms....
    • Alam, T., Shia, W. C., Hsu, F. R., and Hassan, T. (2023). Improving Breast Cancer Detection and Diagnosis through Semantic Segmentation Using...
    • Alkhaleefah, M., Tan, T. H., Chang, C. H., Wang, T. C., Ma, S. C., Chang, L., and Chang, Y. L. (2022). Connected-SegNets: A Deep Learning...
    • American Cancer Society- Cancer facts and figures – ACS. (2013-2022).
    • Andersson, I., Hildell, J., Muhlow, A., and Pettersson, H. (1978). Number of projections in mammography: influence on detection of breast...
    • Anitha, J., and Peter, J. D. (2015). Mammogram segmentation using maximal cell strength updation in cellular automata. Medical and Biological...
    • Asadi, B., and Memon, Q. (2023). Efficient breast cancer detection via cascade deep learning network. International Journal of Intelligent...
    • Azour, F., and Boukerche, A. (2023). An Efficient Transfer and Ensemble Learning based Computer Aided Breast Abnormality Diagnosis System....
    • Baccouche, A., Garcia-Zapirain, B., Castillo Olea, C., and Elmaghraby, A. S. (2021). Connected-UNets: a deep learning architecture for breast...
    • Baker, J. A., Rosen, E. L., Lo, J. Y., Gimenez, E. I., Walsh, R., and Soo, M. S. (2003). Computer-aided detection (CAD) in screening mammography:...
    • Bobeda, J., García-Gonzalez, M. J., Pérez-Herrera, L. V., and Lopez-Linares, K. (2023, May). Unsupervised Data Drift Detection Using Convolutional...
    • Breiman, L. (1996). Bagging Predictors. Machine Learning, 26, 123–140. https://doi.org/10.1007/BF00058655
    • Breiman, L. (2001). Random Forests. Machine Learning, 45, 5–32. https://doi.org/10.1023/A:1010933404324
    • Byung W. H., and Bong S. S. (2010). Segmentation of Regions of Interest in Mam-mograms in a Topographic Approach. IEEE Transactions on Information...
    • Chakravarthy, S. S., Bharanidharan, N., and Rajaguru, H. (2023). Processing of digital mammogram images using optimized ELM with deep transfer...
    • Chen, Z., Yang, J., Li, S., Lv, M., Shen, Y., Wang, B., … and Yang, J. (2017). Inva-sive lobular carcinoma of the breast: a special histological...
    • Cheng, Y., Gao, Y., Xie, L., Xie, X., and Lin, W. (2020). Spatial enhanced rotation aware network for breast mass segmentation in digital...
    • Cho, P., and Yoon, H. J. (2021). Evaluation of U-net-based image segmentation model to digital mammography. Medical Imaging 2021: Image Processing,...
    • Christianini, N., and Taylor, J. C. S. (2000). An Introduction to Support Vector Ma-chines and Other Kernel-Based Learning Methods. Cambridge...
    • Dhamodharan, S., Pichai, S. (2021). Background Preserved and Feature-Oriented Contrast Improvement Using Weighted Cumulative Distribution...
    • Dibden, A., Offman, J., Duffy, S. W., and Gabe, R. (2020). Worldwide Review and Meta-Analysis of Cohort Studies Measuring the Effect of Mammography...
    • Freund, Y. and Schapire, R. E. (1997). A Decision-Theoretic Generalization of On-Line Learning and an Application to Boosting. Journal of...
    • Friedman, J. H., J. Bentely, and Finkel, R. A. (1977). An Algorithm for Finding Best Matches in Logarithmic Expected Time. ACM Transactions...
    • Ganesh, K., and Rao, B. P. (2023). Classification of Breast Cancer from Mammogram Images using DenseNET. Journal of Biomedical Engineering,...
    • Ghiasi G. (2021). Simple Copy-Paste is a Strong Data Augmentation Method for Instance Segmentation. IEEE/CVF Conference on Computer Vision...
    • Guo, Y., Hastie, T., and Tibshirani, R. (2007). Regularized linear discriminant analysis and its application in microarrays. Biostatistics,...
    • Gupta, B., Tiwari, M. (2017). A tool supported approach for brightness preserving contrast enhancement and mass segmentation of mammogram...
    • Hamad, Y. A., Seno, M. E., Safonova, A. N., & Shakir, S. (2022). Breast Tumor Segmentation on Medical Images using Combination of Fuzzy...
    • Hastie, T., Tibshirani, R., Friedman, J. H., and Friedman, J. H. (2009). The elements of statistical learning: data mining, inference, and...
    • Heath, M., Bowyer K., Kopans D., Kegelmeyer P., Moore R., and Chang K. (1998). Current status of the digital database for screening mammography....
    • Kaiming, H., Xiangyu, Z., Shaoqing, R., and Jian, S. (2015). Delving deep into rectifiers: Surpassing human-level performance on imagenet...
    • King, M. A., Doherty, P. W., Schwinger, R. B., and Penney, B. C. (1983). A Wiener filter for nuclear medicine images. Medical physics, 10(6),...
    • Kulkarni, S., and Rabidas, R. (2023). Fully convolutional network for automated detection and diagnosis of mammographic masses. Multimedia...
    • Kumar, I., Kumar, A., Kumar, V. A., Kannan, R., Vimal, V., Singh, K. U., and Mahmud, M. (2022). Dense tissue pattern characterization using...
    • Li, B., Friedman, J., Olshen, R., and Stone, C. (1984). Classification and regression trees (CART). Biometrics, 40(3), 358–361. https://doi.org/10.2307/2530946
    • Li, H., Chen, D., Nailon, W. H., Davies, M. E., and Laurenson, D. I. (2021). Dual convolutional neural networks for breast mass segmentation...
    • Li, H., Zhuang, S., Li, D., Zhao, J., and Ma, Y. (2019). Benign and malignant classification of mammogram images based on deep learning. Biomedical...
    • Loizidou, K., Skouroumouni, G., Nikolaou, C., and Pitris, C. (2020). An automated breast micro-calcification detection and classification...
    • Lopez, M. G., Posada, N., Moura, D. C., Pollan, R. R., Valiente, J. M. F., Ortega, C. S., and Araújo, B. M. F. (2012). BCDR: a breast cancer...
    • Mabrouk, M. S., Afify, H. M., and Marzouk, S. Y. (2019). Fully automated computer-aided diagnosis system for micro calcifications cancer based...
    • Michael, H., Kevin, B., Daniel, K., Richard, M., and Philip, W. K. (2001). The Digital Database for Screening Mammography. In M. J. Yaffe...
    • Misra, S., Solomon, N. L., Moffat, F. L., and Koniaris, L. G. (2010). Screening criteria for breast cancer. Advances In Surgery, 44, 87–100....
    • Mohanty, F., Rup, S., Dash, B., Majhi, B., and Swamy, M. N. S. (2020). An improved scheme for digital mammogram classification using weighted...
    • Moreira, I. C., Amaral, I., Domingues, I., Cardoso, A., Cardoso, M. J., and Cardoso, J. S. (2012). Inbreast: toward a full-field digital mammographic...
    • Nalawade, Y. V. (2009). Evaluation of breast calcifications. The Indian Journal of Radiology and Imaging, 19(4), 282–286. https://doi.org/10.4103/0971-3026.57208
    • Oza, P., Sharma, P., and Patel, S. (2023). Deep ensemble transfer learning-based framework for mammographic image classification. The Journal...
    • Patel, J. J., and Hadia, S. K. (2023). Two-Stage Feature Selection Method Created for 20 Neurons Artificial Neural Networks for Automatic...
    • Pati, A., Parhi, M., Pattanayak, B. K., Singh, D., Singh, V., Kadry, S., and Kang, B. G. (2023). Breast Cancer Diagnosis Based on IoT and...
    • Petrini, D. G., Shimizu, C., Roela, R. A., Valente, G. V., Folgueira, M. A. A. K., and Kim, H. Y. (2022). Breast Cancer Diagnosis in Two-View...
    • Rahmati, P., Hamarneh, G., Nussbaum, D., Adler, A. (2010). A New Preprocessing Filter for Digital Mammograms. In A. Elmoataz, O. Lezoray,...
    • Raj, R., Mathew, J., Kannath, S. K., and Rajan, J. (2022). Crossover based technique for data augmentation. Computer Methods and Programs...
    • Rajalakshmi, N. R., Vidhyapriya, R., Elango, N. and Ramesh, N. (2020). Deeply supervised U-Net for mass segmentation in digital mammograms....
    • Ramani, R., Vanitha, N. S., and Valarmathy, S. (2013). The preprocessing techniques for breast cancer detection in mammography images. International...
    • Ranjbarzadeh, R., Nazanin, T. S., Saeid, J. G., Mohammad, S. E., Mahboub, P., Yaghoub, P., Shokofeh, A., and Malika, B., (2022). MRFE-CNN:...
    • Ravikumar, M., Rachana, P. G., and Shivaprasad, B. J. (2023). Segmentation of tumour from mammogram images using U-SegNet: a hybrid approach....
    • Rebecca, S. L., Francisco, G., Assaf, H., and Daniel, R. (2016). Curated Breast Imaging Subset of DDSM. The Cancer Imaging Archive.
    • Rmili, M., Moutaouakkil, A. E., and Saleck, M. M. (2022). Hybrid Mammogram Segmentation Using Watershed and Region Growing. In Advances in...
    • Schapire, R. E., Freund, Y., Bartlett, P. L., and Lee, W. S. (1998). Boosting the margin: A new explanation for the effectiveness of voting...
    • Seber, G. A. (2009). Multivariate observations. John Wiley and Sons.
    • Shahrokhy, S. M. (2004). Visual and statistical quality assessment and improvement of remotely sensed images. ISPRS Proceedings XXXV (950).
    • Shamim, H. M. (2022). Micro Calcification Segmentation Using Modified U-net Segmentation Network from Mammogram. Journal of King Saud University...
    • Sharma, B. P., and Purwar, R. K. (2020). Dual thresholding based Breast cancer detection in Mammograms. IEEE World Conference on Smart Trends...
    • Sharma, B. P., and Purwar, R. K. (2022). Ensemble Boosted Tree based Mammogram image classification using Texture features and extracted smart...
    • Sharma, B. P., and Purwar, R. K. (2023). An augmented mammogram image dataset and its performance analysis for various classification models....
    • Sharma, M. K., Jas, M., Karale, V., Sadhu, A., and Mukhodhyay, S. (2019). Mammogram segmentation using multi-atlas deformable registration....
    • Sickles, E. A., Weber, W. N., Galvin, H. B., Ominsky, S. H., and Sollitto, R. A. (1986). Baseline screening mammography: one vs two views...
    • Suckling, J. (1994). The Mammographic Image Analysis Society Digital Mammogram Database Exerpta Medica. International Congress Series 1069,...
    • Taghanaki, S. A., Liu, Y., Miles B. and Hamarneh, G. (2017). Geometry-Based Pectoral Muscle Segmentation From MLO Mammogram Views. IEEE Transactions...
    • Talmi, I., Mechrez, R., and Zelnik-Manor, L. (2017). Template matching with deformable diversity similarity. IEEE Conference on Computer Vision...
    • Taylor, L., Nitschke, G. (2018). Improving deep learning with generic data augmentation. IEEE Symposium Series on Computational Intelligence...
    • Tiryaki, V. M. (2023). Mass segmentation and classification from film mammograms using cascaded deep transfer learning. Biomedical Signal...
    • Uthoff, J., and Sieren, J. C. (2018). Information theory optimization based feature selection in breast mammography lesion classification....
    • Vidal, J., Vilanova, J. C., and Martí, R. (2022). A U-Net Ensemble for breast lesion segmentation in DCE MRI. Computers in Biology and Medicine,...
    • Welch, H. G., Prorok, P. C., OMalley, A. J., and Kramer, B. S. (2016). Breast-cancer tumor size, overdiagnosis, and mammography screening...
    • Yang, H., and Zhou, Y. (2021). IDA-GAN: A Novel Imbalanced Data Augmentation GAN. International Conference on Pattern Recognition (ICPR)....
    • Zebari, D. A., Ibrahim, D. A., Zeebaree, D. Q., Mohammed, M. A., Haron, H., Zebari, N. A., and Maskeliunas, R. (2021). Breast cancer detection...
    • Zemmal, N., Azizi, N., Ziani, A., Benzebouchi, N. E., and Aldwairi, M. (2019). An enhanced feature selection approach based on mutual information...
    • Zhang, H., Wu, R., Yuan, T., Jiang, Z., Huang, S., Wu, J., … and Ji, D. (2020). DE-Ada*: A novel model for breast mass classification using...
    • Zhong, Z., Zheng, L., Kang, G., Li, S., and Yang, Y. (2020). Random Erasing Data Augmentation. Proceedings of the AAAI Conference on Artificial...
    • Zuiderveld, K. (1994). Contrast Limited Adaptive Histograph Equalization. Graphic Gems IV, 474–485. San Diego: Academic Press Professional....

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno