Ir al contenido

Documat


Bivariate Generalization of the Kummer-Beta Distribution

  • PAULA ANDREA BRAN-CARDONA [1] ; JOHANNA MARCELA OROZCO-CASTAÑEDA [2] ; DAYA KRISHNA NAGAR [2]
    1. [1] Universidad del Valle (Colombia)

      Universidad del Valle (Colombia)

      Colombia

    2. [2] Universidad de Antioquia

      Universidad de Antioquia

      Colombia

  • Localización: Revista Colombiana de Estadística, ISSN-e 2389-8976, ISSN 0120-1751, Vol. 34, Nº. 3, 2011, págs. 497-512
  • Idioma: inglés
  • Títulos paralelos:
    • Generalización Bivariada de la Distribución Kummer-Beta
  • Enlaces
  • Resumen
    • español

      En este artículo, definimos la función de densidad de la generalización bivariada de la distribución Kummer-Beta. Estudiamos algunas de sus propiedades y casos particulares, así como las distribuciones marginales y condicionales. Para ilustrar el comportamiento de la función de densidad, mostramos algunos gráficos para diferentes valores de los parámetros. Finalmente, encontramos la distribución del producto de dos variables cuya distribución conjunta es Kummer-Beta bivariada y utilizamos la distribución beta como una aproximación. Además, con el fin de comparar la distribución exacta y la aproximada de este producto, mostramos algunos gráficos. Se presenta una aplicación a datos climáticos sobre niebla y neblina de Colombia.

    • English

      In this article, we study several properties such as marginal and conditional distributions, joint moments, and mixture representation of the bivariate generalization of the Kummer-Beta distribution. To show the behavior of the density function, we give some graphs of the density for different values of the parameters. Finally, we derive the exact and approximate distribution of the product of two random variables which are distributed jointly as bivariate Kummer-Beta. The exact distribution of the product is derived as an infinite series involving Gauss hypergeometric function, whereas the beta distribution has been used as an approximate distribution. Further, to show the closeness of the approximation, we have compared the exact distribution and the approximate distribution by using several graphs. An application of the results derived in this article is provided to visibility data from Colombia.

  • Referencias bibliográficas
    • Balakrishnan, N.,Lai, C. D.. (2009). Continuous Bivariate Distributions. Springer.
    • Barry, C. A.,Castillo, E.,Sarabia, J. M.. (1999). Conditional Specification of Statistical Models. Springer-Verlag.
    • Gordy, M.. (1998). 'Computationally convenient distributional assumptions for common-value auctions'. Computational Economics. 12....
    • Gupta, A. K.,Carde\~no, L.,Nagar, D. K.. (2001). 'Matrix variate Kummer-Dirichlet distributions'. Journal of Applied Mathematics....
    • Gupta, A. K.,Nagar, D. K.. (2000). Matrix Variate Distributions. Chapman & Hall/CRC, Boca Raton, FL.
    • Gupta, A. K.,Song, D.. (1996). 'Generalized Liouville distribution'. Computers & Mathematics with Applications. 32. 103-109
    • Gupta, A. K.,Wong, C. F.. (1985). 'On three and five parameter bivariate Beta distributions'. International Journal for Theoretical...
    • Gupta, R. D.,Richards, D. S. P.. (2001). 'The history of the Dirichlet and Liouville distributions'. International Statistical Review....
    • Hahn, G. J.,Shapiro, S. S.. (1967). Statistical Models in Engineering. John Wiley and Sons.
    • Hutchinson, T. P.,Lai, C. D.. (1991). The Engineering Statistician's Guide To Continuous Bivariate Distributions. Rumsby Scientific Publishing....
    • Kotz, S.,Balakrishnan, N.,Johnson, N. L.. (2000). Continuous Multivariate Distributions. Vol. 1. Models and applications. Wiley-Interscience,...
    • Lehmann, E. L.. (1966). 'Some concepts of dependence'. Annals of Mathematical Statistics. 37. 1137-1153
    • Luke, Y. L.. (1969). The Special Functions and their Approximations. Academic Press.
    • Mardia, K. V.. (1970). Families of Bivariate Distributions. Hafner Publishing Co., Darien, Conn..
    • Marshall, A. W.,Olkin, I.. (1979). Inequalities: Theory of Majorization and its Applications. Academic Press Inc..
    • Nadarajah, S.,Kotz, S.. (2005). 'Some bivariate Beta distributions'. A Journal of Theoretical and Applied Statistics. 39. 457-466
    • Nadarajah, S.,Zografos, K.. (2005). 'Expressions for Rényi and Shannon entropies for bivariate distributions'. Information Sciences....
    • Nagar, D. K.,Gupta, A. K.. (2002). 'Matrix-variate Kummer-Beta distribution'. Journal of the Australian Mathematical Society. 73....
    • Nagar, D. K.,Zarrazola, E.. (2005). 'Distributions of the product and the quotient of independent Kummer-Beta variables'. Scientiae...
    • Ng, K. W.,Kotz, S.. (1995). Kummer-Gamma and Kummer-Beta univariate and multivariate distributions. Department of Statistics, The University...
    • Rényi, Alfréd. (1961). 'Procedings 4th Berkeley Symposium Mathematical Statistics and Probability'. University of California Press....
    • Shannon, C. E.. (1948). 'A mathematical theory of communication'. The Bell System Technical Journal. 27. 379-423623
    • Sivazlian, B. D.. (1981). 'On a multivariate extension of the Gamma and Beta distributions'. SIAM Journal on Applied Mathematics....
    • Song, D.,Gupta, A. K.. (1997). 'Properties of generalized Liouville distributions'. Random Operators and Stochastic Equations. 5....
    • Zografos, K.. (1999). 'On maximum entropy characterization of Pearson's type II and VII multivariate distributions'. Journal of...
    • Zografos, K.,Nadarajah, S.. (2005). 'Expressions for Rényi and Shannon entropies for multivariate distributions'. Statistics &...
Los metadatos del artículo han sido obtenidos de SciELO Colombia

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno