Ir al contenido

Documat


A Fractional Semi-Analytical Iterative Method for the Approximate Treatment of Fisher’s Equations

  • Areej Almuneef [1] ; Ahmed Hagag [2]
    1. [1] Princess Nourah bint Abdulrahman University

      Princess Nourah bint Abdulrahman University

      Arabia Saudí

    2. [2] Sinai University

      Sinai University

      Egipto

  • Localización: Métodos numéricos para cálculo y diseño en ingeniería: Revista internacional, ISSN 0213-1315, Vol. 40, Nº 4, 2024, 16 págs.
  • Idioma: inglés
  • DOI: 10.23967/j.rimni.2024.10.56315
  • Enlaces
  • Resumen
    • This study presents a novel fractional semi-analytical iterative approach for solving nonlinear fractional Fisher’s equations using the Caputo fractional operator. The primary objective is to provide a method that yields exact solutions to nonlinear fractional equations without requiring assumptions about nonlinear terms. By applying the Temimi-Ansari Method (TAM) with fractional calculus, this approach offers a robust solution to the time-fractional nonlinear Fisher’s equation, a model relevant in fields such as population dynamics, tumor growth, and gene propagation. In this work, tables and graphical illustrations show that the proposed method minimizes computational complexity and delivers significant accuracy across multiple cases of Fisher’s equations. The findings indicate that TAM with fractional order derivatives provides accurate, efficient approximations with reduced computational workload, showcasing the technique’s potential for addressing a wide range of nonlinear fractional differential equations.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno