Ir al contenido

Documat


Detectando un Espía con Criptografía Cuántica

  • Solar, Mauricio [1] ; Villacura, Jean-Pierre [1] ; Cisternas Alvarez, Felipe [1] ; Dombrovskaia, Liuba [1]
    1. [1] Universidad Técnica Federico Santa María

      Universidad Técnica Federico Santa María

      Valparaíso, Chile

  • Localización: Memoria Investigaciones en Ingeniería, ISSN 2301-1092, ISSN-e 2301-1106, Nº. 27, 2024, págs. 200-219
  • Idioma: español
  • DOI: 10.36561/ing.27.13
  • Títulos paralelos:
    • Detectando um Espião com Criptografia Quântica
    • Detecting a Spy with Quantum Cryptography
  • Enlaces
  • Resumen
    • español

      Este artículo muestra una implementación de la criptografía cuántica. Se introduce los conceptos básicos de la computación cuántica para comprender los términos mencionados en la implementación relacionados con la ciberseguridad y la distribución de llaves cuánticas (QKD). Se muestra una aplicación de QKD, donde se ve cómo se detecta fácilmente un espía cuando se intercepta un mensaje.

    • português

      Este artigo mostra uma implementação de criptografia quântica. Apresentamos ao leitor os conceitos básicos da computação quântica para que ele possa entender facilmente os termos mencionados na implementação relacionados à segurança cibernética e distribuição de chaves quânticas (QKD). Mostramos uma aplicação de QKD, onde podemos ver como um espião é facilmente detectado quando uma mensagem é interceptada.

    • English

      This article shows an implementation of quantum cryptography. We introduce the reader to the basic concepts of quantum computing so that they can easily understand the terms mentioned in the implementation related to cybersecurity and quantum key distribution (QKD). We show an application of QKD, where we can see how a spy is easily detected when a message is intercepted.

  • Referencias bibliográficas
    • R. P. Feynman (1982). Simulating physics with computers. Int. J. Theor. Phys. 21, 467–488
    • J.D. Whitfield, J. Yang, W. Wang, J.T. Heath and B. Harrison. Quantum computing 2022.
    • I. Pogorelov, T. Feldker, Ch.D. Marciniak, L. Postler, G. Jacob, O. Krieglsteiner, V. Podlesnic, M. Meth, V. Negnevitsky, M. Stadler, B. Höfer,...
    • S. Kwon, A. Tomonaga, G. L. Bhai, S. J. Devitt and J.-S. Tsai. Gate-based superconducting quantum computing. J. Appl. Phys. 129(4): 041102....
    • J. S. Lee, N. Farmakidis, C. D. Wright and H. Bhaskaran. Polarization-selective reconfigurability in hybridized-active-dielectric nanowires....
    • J. Wurtz et al. Aquila: Quera’s 256-qubit neutral-atom quantum computer. 2023. https://arxiv.org/abs/2306.11727.
    • M. Kornjača, R. Samajdar, T. Macrì et al. Trimer quantum spin liquid in a honeycomb array of Rydberg atoms. Commun Phys 6, 358 (2023). https://doi.org/10.1038/s42005-023-01470-z
    • S. H. Adachi and M. P. Henderson. Application of Quantum Annealing to Training of Deep Neural Networks. 2015. https://arxiv.org/abs/1510.06356
    • Y. Cao, J. Romero, J.P. Olson, M. Degroote, P.D. Johnson, M. Mária, I. D. Kivlichan, T. Menke, B. Peropadre, N.P.D. Sawaya, S. Sim, L. Veis...
    • Ma, M. Govoni and G. Galli. Quantum simulations of materials on near-term quantum computers.npj Comput Mater 6, 85, 2020. https://doi.org/10.1038/s41524-020-00353-z
    • Sivarajah. What is Quantum Control Theory? AZoQuantum. 2022. https://www.azoquantum.com/Article.aspx?ArticleID=335
    • R. Bassoli, H. Boche, C. Deppe, R. Ferrara, F. H. P. Fitzek, G. Janssen and S. Saeedinaeeni. Quantum Communication Networks. Foundations in...
    • Y.L. Len, T. Gefen, A. Retzker et al. Quantum metrology with imperfect measurements. Nat Commun 13, 6971. 2022. https://doi.org/10.1038/s41467-022-33563-8
    • A. Díaz, M. Rodriguez and M. Piattini. Towards a set of metrics for hybrid (quantum/classical) systems maintainability. Journal of Universal...
    • S. N., Singh, H. and N.A.U. An extensive review on quantum computers. Advances in Engineering Software, 174, 103337. 2022. https://doi.org/10.1016/j.advengsoft.2022.103337
    • J. Preskill, J. Quantum Computing in the NISQ era and beyond. Quantum, 2, 79. 2018. doi:10.22331/q-2018-08-06-79
    • M. Brooks. Beyond quantum supremacy: the hunt for useful quantum computers. Nature, 574(7776), 19-21. 2020. doi:10.1038/d41586-019-02936-3
    • C.H. Bennett. Logical reversibility of computation. IBM Journal of Research and Development, 17(6), 525-532. 1973. doi:10.1147/rd.176.0525
    • R. Raussendorf. Key ideas in quantum error correction. Philo- sophical Transactions of the Royal Society A: Mathematical, Physical and Engineering...
    • J.L. Park. The concept of transition in quantum mechanics. Foundations of Physics, 1, 23-33. 1970.
    • P. Benioff. The computer as a physical system: A microscopic quantum mechanical Hamiltonian model of computers as represented by Turing machines....
    • T. Toffoli. Reversible computing. In J. de Bakker J. van Leeuwen (Eds.), Automata, languages and programming (pp. 632–644). 1980. Berlin,...
    • P.W. Shor. Scheme for reducing decoherence in quantum computer memory, 52(4), R2493-R2496. 1995. doi:10.1103/PhysRevA.52.R2493
    • W. Pfaff, B.J. Hensen, H. Bernien, S.B. van Dam, M.S. Blok, T.H. Taminiau, R. Hanson. Unconditional quantum teleportation between distant...
    • K.K. Ko and E.S. Jung. Development of cybersecurity technology and algorithm based on quantum computing. Applied Sciences, 11(19). 2021. doi:10.3390/app11199085
    • X.L. Tianqi Zhou and J. Shen. Quantum cryptography for the future internet and the security analysis. Security and Communication Networks....
    • P.C. Uttam Ghosh and D. Das. A comprenhensive tutorial on cybersecurity in quantum computing paradigm. TechRxiv. 2023. https://doi.org/10.36227/techrxiv.22277251.v1
    • D.J. Bernstein, N. Heninger, P. Lou and L. Valenta. Post-quantum rsa. Cryptology ePrint Archive,
    • Paper 2017/351. 2017. https://eprint.iacr.org/2017/351

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno