Ir al contenido

Documat


Crystallinity of rigid flat connections revisited

  • Hélène Esnault [2] ; Michael Groechenig [1]
    1. [1] University of Toronto

      University of Toronto

      Canadá

    2. [2] Department of Mathematics, Germany
  • Localización: Selecta Mathematica, New Series, ISSN 1022-1824, Vol. 31, Nº. 1, 2025
  • Idioma: inglés
  • DOI: 10.1007/s00029-024-00995-7
  • Enlaces
  • Resumen
    • We generalise a theorem on the existence of Frobenius isocrystal and FontaineLaffaille module structures on rigid flat connections to the non-proper setting. The proof is based on a new strategy of a point-set topological flavour, which allows us to produce a purely p-adic statement and thereby to avoid the classical Simpson correspondence.

  • Referencias bibliográficas
    • 1. Abramovich, D., Graber, T., Vistoli, A.: Gromov-Witten Theory of Deligne-Mumford Stacks. Am. J. Math. 130(5), 1337–1398 (2008)
    • 2. Abramovich, D., Olsson, M., Vistoli, A.: Tame stacks in positive characteristic. Annales de l’institut Fourier 58(4), 1057–1091 (2008)
    • 3. Berthelot, P.: Cohomologie cristalline des schémas de caracteristique p>0, Lecture Notes in Math. 407, Springer (1974)
    • 4. Berthelot, P.: Cohomologie rigide et cohomologie á supports propres I, prépublication 96-03 (1991), Université de Rennes, https://perso.univ-rennes1.fr/pierre.berthelot/publis/Cohomologie_Rigide_I. pdf
    • 5. Berthelot, P.: D-modules arithmétiques. II. Descente par Frobenius. Mém. Soc. Math. Fr. (N.S.) No. 81 (2000)
    • 6. Cadman, C.: Using stacks to impose tangency conditions on curves. Am. J. Math. 129(2), 405–427 (2007)
    • 7. Cassels, J.W.S.: Local Fields, vol. 3. Cambridge University Press, Cambridge (1986)
    • 8. Cesnaviˇ ˇ cius, K.: Topology on cohomology of local fields. Forum of Mathematics, Sigma, Vol. 3, e16, 55 pages (2015)
    • 9. Coleman, R., Iovita, A.: Hidden structures on semistable curves. Astérisque 331, 179–254 (2010)
    • 10. Conrad, B.: https://math.stanford.edu/~conrad/papers/adelictop.pdf Accessed May 30, 2023
    • 11. D’Addezio, M., Esnault, H.: On the universal extensions in Tannakian categories. Int. Math. Res. Not. 18, 14008–14033 (2022)
    • 12. Deligne, P., Illusie, L.: Relèvements modulo p2 et décomposition du complexe de de Rham. Invent. Math. 89(2), 247–270 (1987)
    • 13. de Jong et al: The Stacks Project. https://stacks.math.columbia.edu
    • 14. Esnault, H.: Lectures on Local Systems in Algebraic-Arithmetic Geometry. Lecture Notes in Mathematics 2337 (2023), Springer Verlag
    • 15. Esnault, H., Groechenig, M.: Rigid local systems and F-isocrystals. Acta Math. 225(1), 103–158 (2020)
    • 16. Esnault, H., Viehweg, E.: Logarithmic de Rham complexes and vanishing theorems. Inventiones math. 86, 161–194 (1986)
    • 17. Esnault, H., Viehweg, E.: Lectures on Vanishing Theorems, Lecture Notes, Birkhäuser, DMV Seminar 20, 164 pages (1992)
    • 18. Faltings, G.: Crystalline cohomology and p-adic Galois-representations. Algebraic analysis, geometry, and number theory (Baltimore, MD,...
    • 19. Hall, J., Rydh, D.: Coherent Tannaka duality and algebraicity of Hom-stacks. Algebra Number Theory 13(7), 1633–1675 (2019)
    • 20. Halpern-Leistner, D.: On the structure of instability in moduli theory. arxiv preprint (2014). arXiv:2005.13472
    • 21. Igusa, J. I.: An introduction to the theory of local zeta functions. American Mathematical Soc. 14 (2000)
    • 22. Laaroussi, A.: Connexions paraboliques et champ des racines. Université de Lille PhD thesis available online. https://hal.science/tel-03650891v1....
    • 23. Lan, G., Sheng, M., Zuo, K.: Nonabelian Hodge theory in positive characteristic via exponential twisting. Math. Res. Lett. 22(3), 859–879...
    • 24. Lan, G., Sheng, M., Zuo, K.: Semistable Higgs bundles, periodic Higgs bundles and representations of algebraic fundamental groups. J....
    • 25. Langer, A.: Semistable modules over Lie algebroids in positive characteristic. Doc. Math. 19, 509–540 (2014)
    • 26. Lazda, C.: A note on effective descent for overconvergent isocrystals. J. Number Theory 237, 395–410 (2022)
    • 27. Moret-Bailly, L.: Problèmes de Skolem sur les champs algébriques. Compositio Math. 125(1), 1–30 (2001)
    • 28. Olsson, M.: Logarithmic geometry and algebraic stacks. Ann. Sci. École Norm. Sup. 36(5), 747–791 (2003)
    • 29. Olsson, M.: Crystalline cohomology of algebraic stacks and Hyodo-Kato comohology. Astérisque 316 (2007)
    • 30. Ogus, A., Vologodsky, V.: Nonabelian Hodge theory in characteristic p. Publ. Math. Inst. Hautes Études Sci. No. 106, 1–138 (2007)
    • 31. Pila, J., Shankar, A., Tsimerman, J.: Canonical heights on Shimura varieties and the André-Oort conjecture. With an appendix by Esnault...
    • 32. Schepler, D.: Logarithmic nonabelian Hodge theory in characteristic p. arXiv:0802.1977
    • 33. Shiho, A.: Notes on generalizations of local Ogus-Vologodsky correspondence. J. Math. Sci. Univ. Tokyo 22, 793–875 (2015)
    • 34. Simpson, C.: Iterated destabilizing modifications for vector bundles with connection. Vector bundles and complex geometry. Contemp. Math.,...
    • 35. Talpo, M., Vistoli, A.: Infinite root stacks and quasi-coherent sheaves on logarithmic schemes. Proc. London Math. Soc., 116: 1187-1243
    • 36. Wang, J.: The moduli stack of G-bundles. arXiv:1104.4828
    • 37. Xu, D.: Lifting the Cartier transform of Ogus-Vologodsky modulo pn. Mémoires de la Société Mathématique de France 163 (2019), vi+133...

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno