Ir al contenido

Documat


JSJ decompositions of knot exteriors, Dehn surgery and the L-space conjecture

  • Steven Boyer [1] ; Cameron McA. Gordon [2] ; Ying Hu [3]
    1. [1] University of Quebec at Montreal

      University of Quebec at Montreal

      Canadá

    2. [2] University of Texas at Austin

      University of Texas at Austin

      Estados Unidos

    3. [3] University of Nebraska System

      University of Nebraska System

      Estados Unidos

  • Localización: Selecta Mathematica, New Series, ISSN 1022-1824, Vol. 31, Nº. 1, 2025
  • Idioma: inglés
  • Enlaces
  • Resumen
    • In this article, we apply slope detection techniques to study properties of toroidal 3- manifolds obtained by performing Dehn surgeries on satellite knots in the context of the L-space conjecture. We show that if K is an L-space knot or admits an irreducible rational surgery with non-left-orderable fundamental group, then the JSJ graph of its exterior is a rooted interval. Consequently, any rational surgery on a composite knot has a left-orderable fundamental group. This is the left-orderable counterpart of Krcatovich’s result on the primeness of L-space knots, which we reprove using our methods. Analogous results on the existence of co-orientable taut foliations are proved when the knot has a fibred companion. Our results suggest a new approach to establishing the counterpart of Krcatovich’s result for surgeries with co-orientable taut foliations, on which partial results have been achieved by Delman and Roberts.

      Finally, we prove results on left-orderable p/q-surgeries on knots with p small.

  • Referencias bibliográficas
    • 1. Baker, K.L., Motegi, K.: Seifert vs. slice genera of knots in twist families and a characterization of braid axes. Proc. Lond. Math. Soc....
    • 2. Berge, J.: The knots in D2 × S1 which have nontrivial Dehn surgeries that yield D2 × S1. Topol. Appl. 38(1), 1–19 (1991)
    • 3. Boyer, S., Clay, A.: Foliations, orders, representations, L-spaces and graph manifolds. Adv. Math. 310, 159–234 (2017)
    • 4. Boyer, S., Clay, A.: Order-detection of slopes on the boundaries of knot manifolds. preprint arXiv:2206.00848 (2022)
    • 5. Boyer, S., Hu, Y.: Taut foliations in branched cyclic covers and left-orderable groups. Trans. Am. Math. Soc. 372(11), 7921–7957 (2019)
    • 6. Boyer, S., Rolfsen, D., Wiest, B.: Orderable 3-manifold groups. Ann. Inst. Fourier 55(1), 243–288 (2005)
    • 7. Boyer, S., Gordon, C.M., Watson, L.: On L-spaces and left-orderable fundamental groups. Math. Ann. 356(4), 1213–1245 (2013)
    • 8. Boyer, S., Gordon, C., Hu, Y.: Slope detection and toroidal 3-manifolds. arXiv:2106.14378 (2021)
    • 9. Boyer, S., Gordon, C., Hu, Y.: Recalibrating R-order trees and Homeo+(S1)-representations of link groups. arXiv:2306.10357 (2023)
    • 10. Budney, R.: JSJ-decompositions of knot and link complements in S3. Enseign. Math. 52(3–4), 319–359 (2006)
    • 11. Calegari, D.: Foliations and the Geometry of 3-Manifolds. Oxford Mathematical Monographs. Oxford University Press, Oxford (2007)
    • 12. Calegari, D., Dunfield, N.M.: Laminations and groups of homeomorphisms of the circle. Invent. Math. 152(1), 149–204 (2003)
    • 13. Delman, C., Roberts, R.: Persistently foliar composite knots. Algebr. Geom. Topol. 21(6), 2761–2798 (2021)
    • 14. Ethan Farber, B. R., Wang, L.: Fixed point-free pseudo-anosovs and the cinquefoil. arXiv:2203.01402 (2021)
    • 15. Fenley, S.: Ideal boundaries of pseudo-Anosov flows and uniform convergence groups with connections and applications to large scale geometry....
    • 16. Fenley, S., Mosher, L.: Quasigeodesic flows in hyperbolic 3-manifolds. Topology 40(3), 503–537 (2001)
    • 17. Fried, D.: Transitive Anosov flows and pseudo-Anosov maps. Topology 22(3), 299–303 (1983)
    • 18. Gabai, D.: Foliations and the topology of 3-manifolds. J. Differ. Geom. 18(3), 445–503 (1983)
    • 19. Gabai, D.: Foliations and the topology of 3-manifolds. II. J. Differ. Geom. 26(3), 461–478 (1987)
    • 20. Gabai, D.: Foliations and the topology of 3-manifolds. III. J. Differ. Geom. 26(3), 479–536 (1987)
    • 21. Gabai, D.: Surgery on knots in solid tori. Topology 28(1), 1–6 (1989)
    • 22. Gabai, D.: 1-bridge braids in solid tori. Topol. Appl. 37(3), 221–235 (1990)
    • 23. Gabai, D.: Problems in foliations and laminations. In: Geometric topology (Athens, GA, 1993), volume 2 of AMS/IP Stud. Adv. Math., pages...
    • 24. Ghiggini, P.: Knot Floer homology detects genus-one fibred knots. Am. J. Math. 130(5), 1151–1169 (2008)
    • 25. Gordon, C.M.: Dehn surgery and satellite knots. Trans. Am. Math. Soc. 275(2), 687–708 (1983)
    • 26. Hanselman, J., Rasmussen, J., Rasmussen, S.D., Watson, L.: Taut foliations on graph manifolds. preprint arXiv:1508.05911 (2015)
    • 27. Hanselman, J., Rasmussen, J., Watson, L.: Bordered floer homology for manifolds with torus boundary via immersed curves. Journal of the...
    • 28. Hector, G., Hirsch, U.: Introduction to the geometry of foliations. Part A, volume 1 of Aspects of Mathematics. Friedr. Vieweg & Sohn,...
    • 29. Hedden, M.: On knot Floer homology and cabling. II. Int. Math. Res. Not. IMRN 12, 2248–2274 (2009)
    • 30. Hedden, M.: Notions of positivity and the Ozsváth-Szabó concordance invariant. J. Knot Theory Ramifications 19(5), 617–629 (2010)
    • 31. Hendricks, K., Lidman, T., Lipshitz, R.: Rank inequalities for the Heegaard Floer homology of branched covers. Doc. Math. 27, 581–612...
    • 32. Hom, J.: A note on cabling and L-space surgeries. Algebr. Geom. Topol. 11(1), 219–223 (2011)
    • 33. Honda, K., Kazez,W.H., Mati´c, G.: Right-veering diffeomorphisms of compact surfaces with boundary. Invent. Math. 169(2), 427–449 (2007)
    • 34. Hu, Y.: Euler class of taut foliations and dehn filling. Comm. Anal. Geom., to appear
    • 35. Jaco, W., Shalen, P.B.: Seifert fibered spaces in 3-manifolds. In: Geometric topology (Proc. Georgia Topology Conf., Athens, Ga., 1977)„...
    • 36. Juhász, A.: A survey of Heegaard Floer homology. In: New Ideas in Low Dimensional Topology, volume 56 of Ser. Knots Everything, pp. 237–296....
    • 37. Kister, J.M.: Microbundles are fibre bundles. Ann. Math. 2(80), 190–199 (1964)
    • 38. Krcatovich, D.: The reduced knot Floer complex. Topol. Appl. 194, 171–201 (2015)
    • 39. Landry, M., Tsang, C.C.: Endperiodic maps, splitting sequences, and branched surfaces. preprint (2023)
    • 40. Lidman, T., Manolescu, C.: Floer homology and covering spaces. Geom. Topol. 22(5), 2817–2838 (2018)
    • 41. Lisca, P., Stipsicz, A.I.: Ozsváth-Szabó invariants and tight contact 3-manifolds. III. J. Symplectic Geom. 5(4), 357–384 (2007)
    • 42. Menasco, W.: Closed incompressible surfaces in alternating knot and link complements. Topology 23(1), 37–44 (1984)
    • 43. Milnor, J.: On the existence of a connection with curvature zero. Comment. Math. Helv. 32, 215–223 (1958)
    • 44. Mosher, L.: Laminations and flows transverse to finite depth foliations, Part 1. preprint (1996)
    • 45. Ni, Y.: Knot Floer homology detects fibred knots. Invent. Math. 170(3), 577–608 (2007)
    • 46. Ozsváth, P., Szabó, Z.: On knot Floer homology and Lens space surgeries. Topology 44(6), 1281–1300 (2005)
    • 47. Ozsváth, P.S., Szabó, Z.: Knot Floer homology and rational surgeries. Algebr. Geom. Topol. 11(1), 1–68 (2011)
    • 48. Rasmussen, J., Rasmussen, S.D.: Floer simple manifolds and L-space intervals. Adv. Math. 322, 738–805 (2017)
    • 49. Roberts, R.: Constructing taut foliations. Comment. Math. Helv. 70(4), 516–545 (1995)
    • 50. Roberts, R.: Taut foliations in punctured surface bundles. II. Proc. Lond. Math. Soc. 83(2), 443–471 (2001)
    • 51. Rudolph, L.: Constructions of quasipositive knots and links: III: A characterization of quasipositive Seifert surfaces. Topology 31(2),...
    • 52. Scharlemann, M.: Producing reducible 3-manifolds by surgery on a knot. Topology 29(4), 481–500 (1990)
    • 53. Schubert, H.: Knoten und Vollringe. Acta Math. 90, 131–286 (1953)
    • 54. Spanier, E.H.: Algebraic Topology. McGraw-Hill Book Co., New York-Toronto-London (1966)
    • 55. Thurston, W.P.: Hyperbolic structures on 3-manifolds, II: Surface groups and 3-manifolds which fiber over the circle. arXiv:math/9801045...

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno