Ir al contenido

Documat


Movable cones of complete intersections of multidegree one on products of projective spaces

  • Michael Hoff [1] ; Isabel Stenger [2] ; José Ignacio Yáñez [3]
    1. [1] Saarbrücken, Germany
    2. [2] Institute of Algebraic Geometry, Leibniz University Hannover, Germany
    3. [3] UCLA Mathematics Department, USA
  • Localización: Selecta Mathematica, New Series, ISSN 1022-1824, Vol. 31, Nº. 1, 2025
  • Idioma: inglés
  • DOI: 10.1007/s00029-024-01005-6
  • Enlaces
  • Resumen
    • We study Calabi–Yau manifolds which are complete intersections of hypersurfaces of multidegree 1 in an m-fold product of n-dimensional projective spaces. Using the theory of Coxeter groups, we show that the birational automorphism group of such a Calabi–Yau manifold X is infinite and a free product of copies of Z. Moreover, we give an explicit description of the boundary of the movable cone Mov(X). In the end, we consider examples for the general and non-general case and picture the movable cone and the fundamental domain for the action of Bir(X).

  • Referencias bibliográficas
    • 1. Kawamata, Y.: On the cone of divisors of Calabi–Yau fiber spaces. Int. J. Math. 8(5), 665–687 (1997)
    • 2. Totaro, B.: The cone conjecture for Calabi-Yau pairs in dimension 2. Duke Math. J. 154(2), 241–263 (2010)
    • 3. Prendergast-Smith, A.: The cone conjecture for abelian varieties. J. Math. Sci. Univ. Tokyo 19(2), 243–261 (2012)
    • 4. Lazi´c, V., Peternell, T.: On the cone conjecture for Calabi–Yau manifolds with Picard number two. Math. Res. Lett. 20(6), 1103–1113 (2013)
    • 5. Oguiso, K.: Automorphism groups of Calabi–Yau manifolds of Picard number 2. J. Algebr. Geom. 23(4), 775–795 (2014)
    • 6. Cantat, S., Oguiso, K.: Birational automorphism groups and the movable cone theorem for Calabi-Yau manifolds of Wehler type via universal...
    • 7. Yáñez, J.I.: Birational automorphism groups and the movable cone theorem for Calabi–Yau complete intersections of products of projective...
    • 8. Wang, L.: Remarks on nef and movable cones of hypersurfaces in Mori dream spaces. J. Pure Appl. Algebr. 226(11), 107101 (2022)
    • 9. Hosono, S., Takagi, H.: Movable vs monodromy nilpotent cones of Calabi-Yau manifolds. SIGMA Symmetry Integr. Geom. Methods Appl. 14, 039...
    • 10. Lai, C.J., Wang, S.S.: The movable cone of certain Calabi–Yau threefolds of Picard number two. J. Pure Appl. Algebr. 226(2), 106841 (2022)
    • 11. Ito, A., Lai, C.J., Wang, S.S.: The movable cone of Calabi–Yau threefolds in ruled Fano manifolds. J. Geom. Phys. 195, 105053 (2024)....
    • 12. Lazi´c, V., Oguiso, K., Peternell, T.: Nef line bundles on Calabi–Yau threefolds I. Int. Math. Res. Not. 2020(19), 6070–6119 (2020)
    • 13. Looijenga, E.: Discrete automorphism groups of convex cones of finite type. Compos. Math. 150(11), 1939–1962 (2014)
    • 14. Lesieutre, J.: Notions of numerical Iitaka dimension do not coincide. J. Algebr. Geom. 31(1), 113–126 (2022)
    • 15. Hoff, M., Stenger, I.: On the numerical dimension of Calabi-Yau 3-folds of Picard number 2. Int. Math. Res. Not. 12, 10736 (2022). https://doi.org/10.1093/imrn/rnac148
    • 16. Humphreys, J.E.: Reflection groups and Coxeter groups, Cambridge Studies in Advanced Mathematics, vol. 29. Cambridge University Press,...
    • 17. Vinberg, È.B.: Discrete linear groups that are generated by reflections. Izv. Akad. Nauk SSSR Ser. Mat. 35, 1072–1112 (1971)
    • 18. Chen, H., Labbé, J.-P.: Limit directions for Lorentzian Coxeter systems. Groups Geom. Dyn. 11(2), 469–498 (2017)
    • 19. Morrison, D.R.: Compactifications of moduli spaces inspired by mirror symmetry. Journées de géométrie algébrique d’Orsay - Juillet 1992,...
    • 20. Kawamata, Y.: Flops connect minimal models. Publ. Res. Inst. Math. Sci. 44(2), 419–423 (2008)
    • 21. Wolfram Research, Inc., Mathematica, Version 13.0.1, Champaign, IL, (2021)
    • 22. Grayson, D.R., Stillman, M.E.: Macaulay2—A software system for research in algebraic geometry (version 1.18), Home page: http://www.math.uiuc.edu/Macaulay2/...
    • 23. Hoff, M., Stenger, I., Yáñez, J.I.: Ancillary M2-file to "Movable cones of complete intersections of multidegree one on products of...
    • 24. Nakayama, N.: Zariski-decomposition and abundance, vol. 14. Mathematical Society of Japan, Tokyo (2004)

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno