Ir al contenido

Documat


Twist positivity, L-space knots, and concordance

  • Siddhi Krishna [1] ; Hugh Morton [2] Árbol académico
    1. [1] Columbia University

      Columbia University

      Estados Unidos

    2. [2] University of Liverpool

      University of Liverpool

      Reino Unido

  • Localización: Selecta Mathematica, New Series, ISSN 1022-1824, Vol. 31, Nº. 1, 2025
  • Idioma: inglés
  • DOI: 10.1007/s00029-024-00996-6
  • Enlaces
  • Resumen
    • Many well studied knots can be realized as positive braid knots where the braid word contains a positive full twist; we say that such knots are twist positive. Some important families of knots are twist positive, including torus knots, 1-bridge braids, algebraic knots, and Lorenz knots.We prove that if a knot is twist positive, the braid index appears as the third exponent in its Alexander polynomial. We provide a few applications of this result. After observing that most known examples of L-space knots are twist positive, we prove: if K is a twist positive L-space knot, the braid index and bridge index of K agree. This allows us to provide evidence for Baker’s reinterpretation of the slice-ribbon conjecture: that every smooth concordance class contains at most one fibered, strongly quasipositive knot. In particular, we provide the first example of an infinite family of positive braid knots which are distinct in concordance, and where, as g → ∞, the number of hyperbolic knots of genus g gets arbitrarily large. Finally, we collect some evidence for a few new conjectures, including the following: the braid and bridge indices agree for any L-space knot.

  • Referencias bibliográficas
    • 1. Abe, T., Tagami, K.: Fibered knots with the same 0-surgery and the slice-ribbon conjecture. Math. Res. Lett. 23(2), 303–323 (2016)
    • 2. Alexander, J.W.: A lemma on a system of knotted curves. Proc. Nat. Acad. Sci 9, 93–95 (1923)
    • 3. Baader, S., Dehornoy, P., Liechti, L.: Signature and concordance of positive knots. Bull. Lond. Math. Soc. 50(1), 166–173 (2018)
    • 4. Baker, K.L.: A note on the concordance of fibered knots. J. Topol. 9(1), 1–4 (2016)
    • 5. Baker, K.L., Kegel, M.: Census L-space knots are braid positive, except for one that is not. Algebr. Geom. Topol. 24(1), 569–586 (2024)
    • 6. Baker, K.L., Moore, A.H.: Montesinos knots, Hopf plumbings, and L-space surgeries. J. Math. Soc. Japan 70(1), 95–110 (2018)
    • 7. Birman, J., Kofman, I.: A new twist on Lorenz links. J. Topol. 2(2), 227–248 (2009)
    • 8. Birman, J.S.: Braids, links, and mapping class groups, Annals of Mathematics Studies, No. 82, Princeton University Press, Princeton, N.J.;...
    • 9. Birman, J.S.: The mathematics of Lorenz knots, Topology and dynamics of chaos. World Sci. Ser. Nonlinear Sci. Ser. A Monogr. Treatises...
    • 10. Birman, J.S., Menasco, W.W.: Special positions for essential tori in link complements. Topology 33(3), 525–556 (1994)
    • 11. Birman, J.S., Williams, R.F.: Knotted periodic orbits in dynamical systems. I. Lorenz’s equations. Topology 22(1), 47–82 (1983)
    • 12. Boileau, M., Orevkov, S.: Quasi-positivité d’une courbe analytique dans une boule pseudo-convexe. C. R. Acad. Sci. Paris Sér. I Math....
    • 13. Brauner, K.: Das Verhalten der Funktionen in der Umgebung ihrer Verzweigungsstellen. Abh. Math. Sem. Univ. Hamburg 6(1), 1–55 (1928)
    • 14. Carrell, J.B.: Groups, Matrices, and Vector Spaces, A Group Theoretic Approach to Linear Algebra. Springer, New York (2017)
    • 15. Champanerkar, A., Futer, D., Kofman, I., Neumann, W., Purcell, J.S.: Volume bounds for generalized twisted torus links. Math. Res. Lett....
    • 16. Dai, I., Hom, J., Stoffregen, M., Truong, L.: More concordance homomorphisms from knot Floer homology. Geom. Topol. 25(1), 275–338 (2021)
    • 17. de PaivaT, Purcell JS.: Satellites and Lorenz knots. Int. Math. Res. Not. IMRN 19, 16540–16573 (2023)
    • 18. Dehornoy, P.: On the zeroes of the Alexander polynomial of a Lorenz knot. Ann. Inst. Fourier (Grenoble) 65(2), 509–548 (2015)
    • 19. Franks, J., Williams, R.F.: Braids and the Jones polynomial. Trans. Am. Math. Soc. 303(1), 97–108 (1987)
    • 20. Gabai, D.: 1-bridge braids in solid tori. Topology Appl. 37(3), 221–235 (1990)
    • 21. Ghiggini, P.: Knot Floer homology detects genus-one fibred knots. Am. J. Math. 130(5), 1151–1169 (2008)
    • 22. Ghiggini, P., Spano, G.: Knot Floer homology of fibred knots and Floer homology of surface diffeomorphisms. https://arxiv.org/abs/2201.12411...
    • 23. Gollero, D., Krishna, S., Loving, M., Neri, V., Tahir, I., White, L.: n-bridge braids and the braid index. J. Knot Theory Ramif. 32(13),...
    • 24. Goodrick, R.E.: Two bridge knots are alternating knots. Pacific J. Math. 40, 561–564 (1972)
    • 25. Gordon, M.C.A.C., Litherland, R.A.: On the signature of a link. Invent. Math. 47(1), 53–69 (1978)
    • 26. Greene, J.E., Lewallen, S., Vafaee, F.: (1, 1) L-space knots. Compos. Math. 154(5), 918–933 (2018)
    • 27. Hayden, K.: Quasipositive links and Stein surfaces. Geom. Topol. 25(3), 1441–1477 (2021)
    • 28. Hedden, M.: On knot Floer homology and cabling. II. Int. Math. Res. Not. IMRN 12, 2248–2274 (2009)
    • 29. Hedden, M.: Notions of positivity and the Ozsváth-Szabó concordance invariant. J. Knot Theory Ramif. 19(5), 617–629 (2010)
    • 30. Hedden, M., Watson, L.: On the geography and botany of knot Floer homology. Sel. Math. (N.S.) 24(2), 997–1037 (2018)
    • 31. Hom, J.: A note on cabling and L-space surgeries. Algebr. Geom. Topol. 11(1), 219–223 (2011)
    • 32. Hom, J., Lidman, T., Park, J.H.: Unknotting number and cabling. https://arxiv.org/abs/2206.04196 (2022)
    • 33. Juhász, A., Miller, M., Zemke, I.: Knot cobordisms, bridge index, and torsion in Floer homology. J. Topol. 13(4), 1701–1724 (2020)
    • 34. Lee, C.R.S., Vafaee, F.: On 3-braids and L-space knots. Geom. Dedicata 213, 513–521 (2021)
    • 35. Lidman, T., Moore, A.H.: Pretzel knots with L-space surgeries. Michigan Math. J. 65(1), 105–130 (2016)
    • 36. Litherland,R.A.: Signatures of iterated torus knots. Topology of low-dimensional manifolds (Proceedings Second Sussex conference Chelwood...
    • 37. Livingston, C., Moore, A.H.: Knotinfo: table of knot invariants, knotinfo.math.indiana.edu (2023)
    • 38. Misev, F., Spano, G.: Tight fibred knots without L-space surgeries. Glasg. Math. J. 63(3), 732–740 (2021)
    • 39. Morton, H.R.: Seifert circles and knot polynomials. Math. Proc. Camb. Philos. Soc. 99(1), 107–109 (1986)
    • 40. Ni, Y.: Knot Floer homology detects fibred knots. Invent. Math. 170(3), 577–608 (2007)
    • 41. Ni, Y.: A note on knot Floer homology and fixed points of monodromy. Peking Math. J. 6(2), 635–643 (2023)
    • 42. Ozsváth, P., Szabó, Z.: On knot Floer homology and lens space surgeries. Topology 44(6), 1281–1300 (2005)
    • 43. Rolfson, D.: Knots and Links. Publish or Perish, Inc., Berkeley (1976)
    • 44. Rudolph, L.: Algebraic functions and closed braids. Topology 22(2), 191–202 (1983)
    • 45. Schubert, H.: Über eine numerische Knoteninvariante. Math. Z. 61, 245–288 (1954)
    • 46. Schultens, J.: Bridge numbers of torus knots. Math. Proc. Camb. Philos. Soc. 143(3), 621–625 (2007)
    • 47. Stallings, J.R.: Constructions of fibred knots and links, Algebraic and geometric topology (Proceedings of Symposia in Pure Mathematics,...
    • 48. Stoimenow, A.: Application of braiding sequences III: concordance of positive knots. Int. J. Math. 26(7), 1550050 (2015)
    • 49. Stoimenow, A.: Positive knots, closed braids and the Jones polynomial. Ann. Sc. Norm. Super. Pisa Cl. Sci. 2(2), 237–285 (2003)
    • 50. Vafaee, F.: On the knot Floer homology of twisted torus knots. Int. Math. Res. Not. IMRN 15, 6516– 6537 (2015)
    • 51. Williams, R.F.: The braid index of generalized cables. Pacific J. Math. 155(2), 369–375 (1992)

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno