Ir al contenido

Documat


Characterizations of smooth projective horospherical varieties of Picard number one

  • Jaehyun Hong [2] ; Shin-young Kim [1]
    1. [1] Yonsei University

      Yonsei University

      Corea del Sur

    2. [2] Center for Complex Geometry, Institute for Basic Science (IBS), korea
  • Localización: Selecta Mathematica, New Series, ISSN 1022-1824, Vol. 31, Nº. 1, 2025
  • Idioma: inglés
  • DOI: 10.1007/s00029-024-00997-5
  • Enlaces
  • Resumen
    • Let X be a smooth projective horospherical variety of Picard number one. We show that a uniruled projective manifold of Picard number one is biholomorphic to X if its variety of minimal rational tangents at a general point is projectively equivalent to that of X. To get a local flatness of the geometric structure arising from the variety of minimal rational tangents, we apply the methods of W-normal complete step prolongations. We compute the associated Lie algebra cohomology space of degree two and show the vanishing of holomorphic sections of the vector bundle having this cohomology space as a fiber.

  • Referencias bibliográficas
    • 1. Bai, C., Fu, B., Manivel, L.: On Fano complete intersections in rational homogeneous varieties. Math. Z. 295, 289–308 (2020)
    • 2. Fu, B., Hwang, J.-M.: Special birational transformations of type (2, 1). J. Algebraic Geom. 27(1), 55–89 (2018)
    • 3. Hilton, P., Stammbach, U.: On the differentials in the Lyndon-Hochschild-Serre spectral sequence. Bull. AMS 79(4), 796–799 (1973)
    • 4. Hochschild, G., Serre, J.-P.: Cohomology of group extensions. Trans. Am. Math. Soc. 74, 110–134 (1953)
    • 5. Hong, J., Hwang, J.-M.: Characterization of the rational homogeneous space associciated to a long simple root by its variety of minimal...
    • 6. Hong, J., Morimoto, T.: Prolongations, invariants, and fundamental identities of geometric structures. Differ. Geom. Appl. 92, 102–107...
    • 7. Hwang, J.-M.: Deformation of the space of lines on the 5-dimensional hyperquadric. Preprint
    • 8. Hwang, J.-M., Li, Q.: Characterizing symplectic Grassmannians by varieties of minimal rational tangents. J. Differ. Geom. 119(2), 309–381...
    • 9. Hwang, J.-M., Li, Q.: Recognizing the G2-horospherical manifold of Picard number 1 by varieties of minimal rational tangents. Transf. Groups...
    • 10. Hwang, J.-M., Mok, N.: Rigidity of irreducible Hermitian symmetric spaces of the compact type under Kähler deformation. Invent. Math....
    • 11. Hwang, J.-M.: Varieties of minimal rational tangents on uniruled projective manifolds. Several Complex Variables MSRI Publ. 37, 351–389...
    • 12. Hwang, J.-M., Mok, N.: Cartan-Fubini type extension of holomorphic maps for Fano manifolds of Picard number 1. J. Math. Pures Appl. 80,...
    • 13. Hwang, J.-M., Mok, N.: Deformation rigidity of the rational homogeneous space associated to a long simple root. Annales Scientifiques...
    • 14. Kollár, J.: Rational Curves on Algebraic Varieties. Vol. 32. Springer (1996)
    • 15. Kim, S.-Y.: Geometric structures modeled after smooth projective horospherical varieties of Picard number one, thesis, Seoul National...
    • 16. Kim, S.-Y.: Geometric structures modeled on smooth horospherical varieties of Picard number one. Transf. Groups 22(2), 361–386 (2017)
    • 17. Kostant, B.: Lie algebra cohomology and the generalized Borel-Weil Theorem. Ann. Math. 74(2), 329–387 (1961)
    • 18. Mihai, I.: Odd symplectic flag manifolds. Transf. Groups 12, 573–599 (2007)
    • 19. Mok, N.: Recognizing certain rational homogeneous manifolds of Picard number one from their varieties of minimal rational tangents, Third...
    • 20. Morimoto, T.: Geometric structures on filtered manifolds. Hokkaido Math. J. 22, 263–347 (1993)
    • 21. Park, K.-D.: Deformation rigidity of odd Lagrangian Grassmannians. J. Kor. Math. Soc. 53(no3), 489–501 (2016)
    • 22. Pasquier, B.: On some smooth projective two-orbit varieties with Picard number 1. Math. Ann. 344, 963–987 (2009)
    • 23. Tanaka, N.: On differential systems, graded Lie algebras and pseudo-groups. J. Math. Kyoto Univ. 10, 1–82 (1970)
    • 24. Tanaka, N.: On the equivalence problems associated with simple graded Lie algebras. Hokkaido Math. J. 8, 23–84 (1979)

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno