Ir al contenido

Documat


Family Floer superpotential’s critical values are eigenvalues of quantum product by c1

  • Hang Yuan [1]
    1. [1] Beijing Institute of Mathematical Sciences and Applications (BIMSA), China
  • Localización: Selecta Mathematica, New Series, ISSN 1022-1824, Vol. 31, Nº. 1, 2025
  • Idioma: inglés
  • DOI: 10.1007/s00029-024-01012-7
  • Enlaces
  • Resumen
    • In the setting of the non-archimedean SYZ mirror construction (Yuan in Family Floer program and non-archimedean SYZ mirror construction, Diss. State University of New York at Stony Brook, 2021), we prove the folklore conjecture that the critical values of the mirror superpotential are the eigenvalues of the quantum multiplication by the first Chern class. Our result relies on a weak unobstructed assumption, but it is usually ensured in practice by Solomon’s results (Solomon in Adv Math 367:107107, 2020) on anti-symmetric Lagrangians. Lastly, we note that some explicit examples are presented in the recent work (Yuan in Family Floer mirror space for local SYZ singularities, Forum Mathe Sigma 12:e119, 2024).

  • Referencias bibliográficas
    • 1. Abouzaid, M.: The family Floer functor is faithful. J. Eur. Math. Soc. 19(7), 2139–2217 (2017)
    • 2. Abouzaid, M.: Homological mirror symmetry without correction. J. Am. Math. Soc. 34, 1059–1173 (2021)
    • 3. Abouzaid, M., Fukaya, K., Oh, Y.-G., Ohta, H., Ono, K.: Quantum cohomology and split generation in Lagrangian Floer theory (in preparation)
    • 4. Auroux, D.: Mirror symmetry and T-duality in the complement of an anticanonical divisor. J. Gökova Geom. Topol. 1, 51–91 (2007)
    • 5. Berkovich, V.G.: Spectral Theory and Analytic Geometry over Non-Archimedean Fields, vol. 33. American Mathematical Society (2012)
    • 6. Bosch, S.: Lectures on Formal and Rigid Geometry, vol. 2105. Springer (2014)
    • 7. Castaño-Bernard, R., Matessi, D., Solomon, J.P.: Symmetries of Lagrangian fibrations. Adv. Math. 225(3), 1341–1386 (2010)
    • 8. Cho, C.-H., Yong-Geun, O.: Floer cohomology and disc instantons of Lagrangian torus fibers in Fano toric manifolds. Asian J. Math. 10(4),...
    • 9. Fukaya, K., Yong-Geun, O., Ohta, H., Ono, K.: Canonical models of filtered A∞-algebras and Morse complexes. New Perspect. Chall. Symplectic...
    • 10. Fukaya, K., Yong-Geun, O., Ohta, H., Ono, K.: Lagrangian Floer theory on compact toric manifolds. I. Duke Math. J. 151(1), 23–175 (2010)
    • 11. Fukaya, K., Oh, Y.-G., Ohta, H., Ono, K.: Lagrangian Intersection Floer Theory: Anomaly and Obstruction, Part I, vol. 1. American Mathematical...
    • 12. Fukaya, K., Oh, Y.-G., Ohta, H., Ono, K.: Lagrangian Intersection Floer Theory: Anomaly and Obstruction, Part II, vol. 2. American Mathematical...
    • 13. Fukaya, K., Yong-Geun, O., Ohta, H., Ono, K.: Toric degeneration and nondisplaceable Lagrangian tori in S2 × S2. Int. Math. Res. Not....
    • 14. Fukaya, K., Oh, Y.-G., Ohta, H., Ono, K.: Lagrangian Floer Theory and Mirror Symmetry on Compact Toric Manifolds. Société Mathématique...
    • 15. Fukaya, K., Oh, Y.-G., Ohta, H., Ono, K.: Spectral Invariants with Bulk, Quasi-morphisms and Lagrangian Floer Theory, vol. 260. American...
    • 16. Fukaya, K., Oh, Y.-G., Ohta, H., Ono, K.: Kuranishi Structures and Virtual Fundamental Chains. Springer (2020)
    • 17. Fukaya, K.: Lagrangian surgery and rigid analytic family of Floer homologies. https://www.math. kyoto-u.ac.jp/~fukaya/Berkeley.pdf (2009)
    • 18. Fukaya, K.: Cyclic symmetry and adic convergence in Lagrangian Floer theory. Kyoto J. Math. 50(3), 521–590 (2010)
    • 19. Fukaya, K.: Counting pseudo-holomorphic discs in Calabi–Yau 3-folds. Tohoku Math. J. Second Ser. 63(4), 697–727 (2011)
    • 20. Ganatra, S.: Symplectic cohomology and duality for the wrapped Fukaya category. arXiv preprint arXiv:1304.7312 (2013)
    • 21. Gerstenhaber, M.: The cohomology structure of an associative ring. Ann. Math. 78, 267–288 (1963)
    • 22. Getzler, E.: Cartan homotopy formulas and the Gauss–Manin connection in cyclic homology. Israel Math. Conf. Proc 7, 65–78 (1993)
    • 23. Gross, M., Hacking, P., Keel, S.: Birational geometry of cluster algebras. arXiv preprint arXiv:1309.2573 (2013)
    • 24. Gross, M., Hacking, P., Keel, S.: Mirror symmetry for log Calabi-Yau surfaces I. Publ. Mathématiques de l’IHES 122(1), 65–168 (2015)
    • 25. Gross, M., Hacking, P., Keel, S., Kontsevich, M.: Canonical bases for cluster algebras. J. Am. Math. Soc. 31(2), 497–608 (2018)
    • 26. Getzler, E., Jones, J.D.S.: Operads, homotopy algebra and iterated integrals for double loop spaces. arXiv preprint arXiv:hep-th/9403055...
    • 27. Gross, M., Siebert, B.: From real affine geometry to complex geometry. Ann. Math. 1301–1428 (2011)
    • 28. Groman, Y., Solomon, J.P.: A reverse isoperimetric inequality for J-holomorphic curves. Geom. Funct. Anal. 24(5), 1448–1515 (2014)
    • 29. Hacking, P., Keating, A.: Homological mirror symmetry for log Calabi–Yau surfaces. arXiv preprint arXiv:2005.05010 (2020)
    • 30. Kadeishvili, T.: Structure of A∞-algebra and Hochschild and Harrison cohomology. arXiv preprint arXiv:math/0210331
    • 31. Kontsevich, M.: Bridgeland Stability over Non-Archimedean Fields. IHES website
    • 32. Kontsevich, M.: Homological algebra of mirror symmetry. In: Proceedings of the International Congress of Mathematicians, pp. 120–139....
    • 33. McLean, M.: Birational Calabi–Yau manifolds have the same small quantum products. Ann. Math. 191(2), 439–579 (2020)
    • 34. McDuff, D., Salamon, D.: J-Holomorphic Curves and Symplectic Topology, vol. 52. American Mathematical Society (2012)
    • 35. Ritter, A.F., Smith, I.: The monotone wrapped Fukaya category and the open-closed string map. Selecta Mathematica 23(1), 533–642 (2017)
    • 36. Seidel, P.: A biased view of symplectic cohomology. Curr. Dev. Math. 2006(1), 211–254 (2006)
    • 37. Sheridan, N.: Homological mirror symmetry for Calabi–Yau hypersurfaces in projective space. Invent. Math. 199(1), 1–186 (2015)
    • 38. Sheridan, N.: On the Fukaya category of a Fano hypersurface in projective space. Publ. Mathématiques de l’IHÉS 124(1), 165–317 (2016)
    • 39. Smith, I.: Stability conditions in symplectic topology. arXiv preprint arXiv:1711.04263 (2017)
    • 40. Solomon, J.P.: Involutions, obstructions and mirror symmetry. Adv. Math. 367, 107107 (2020)
    • 41. Solomon, J.P., Tukachinsky, S.B.: Differential forms, Fukaya A∞ algebras, and Gromov–Witten axioms. arXiv preprint arXiv:1608.01304 (2016)
    • 42. Strominger, A., Yau, S.-T., Zaslow, E.: Mirror symmetry is T-duality. Nucl. Phys. B 479(1–2), 243–259 (1996)
    • 43. Tamarkin, D., Tsygan, B.: The ring of differential operators on forms in noncommutative calculus. In: Proceedings of Symposia in Pure...
    • 44. Tu, J.: On the reconstruction problem in mirror symmetry. Adv. Math. 256, 449–478 (2014)
    • 45. Yuan, H.: Fukaya category over affinoid coefficients. In preparation
    • 46. Yuan, H.: Family Floer program and non-Archimedean SYZ mirror construction. Diss. State University of New York at Stony Brook (2021)
    • 47. Yuan, H.: Family Floer mirror space for local SYZ singularities. Forum Mathe Sigma 12, e119 (2024)
    • 48. Yuan, H.: Family Floer SYZ singularities for the conifold transition. arXiv preprint arXiv:2212.13948 (2022)
    • 49. Yuan, H.: Family Floer SYZ conjecture for An singularity. arXiv preprint arXiv:2305.13554 (2023)
    • 50. Yuan, H.: Non-archimedean analytic continuation of unobstructedness. arXiv preprint arXiv:2401.02577 (2024)

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno