Ir al contenido

Documat


On the topology of the moduli of tropical unramified p-covers

  • Yassine El Maazouz [1] ; Paul Alexander Helminck [2] ; Felix Röhrle [3] ; Pedro Souza [4] ; Claudia He Yun [5]
    1. [1] California Institute of Technology

      California Institute of Technology

      Estados Unidos

    2. [2] Tohoku University

      Tohoku University

      Aoba-ku, Japón

    3. [3] University of Tübingen

      University of Tübingen

      Landkreis Tübingen, Alemania

    4. [4] Goethe University Frankfurt

      Goethe University Frankfurt

      Frankfurt, Alemania

    5. [5] University of Michigan–Ann Arbor

      University of Michigan–Ann Arbor

      City of Ann Arbor, Estados Unidos

  • Localización: Selecta Mathematica, New Series, ISSN 1022-1824, Vol. 31, Nº. 1, 2025
  • Idioma: inglés
  • DOI: 10.1007/s00029-024-01007-4
  • Enlaces
  • Resumen
    • We study the topology of the moduli space of unramified Z/p-covers of tropical curves of genus g ≥ 2, where p is a prime number. We use recent techniques by Chan–Galatius–Payne to identify contractible subcomplexes of the moduli space. We then use this contractibility result to show that this moduli space is simply connected. In the case of genus 2, we determine the homotopy type of this moduli space for all primes p. This work is motivated by prospective applications to the top-weight cohomology of the space of prime cyclic étale covers of smooth algebraic curves.

  • Referencias bibliográficas
    • ABBR15. Amini, O.: Baker, Matthew, Brugallé, Erwan, Rabinoff, Joseph: Lifting harmonic morphisms I: metrized complexes and Berkovich skeleta....
    • ACG11. Arbarello, E., Cornalba, M., Griffiths, P.A.: Geometry of algebraic curves. Volume II, volume 268 of Grundlehren der mathematischen...
    • ACP15. Abramovich, D., Caporaso, L., Payne, S.: The tropicalization of the moduli space of curves. Ann. Sci. Éc. Norm. Supér. (4), 48(4):765–809,...
    • ACP22. Allcock, D.: Corey, Daniel, Payne, Sam: Tropical moduli spaces as symmetric -complexes. Bull. Lond. Math. Soc. 54(1), 193–205 (2022)
    • ACV03. Abramovich, D.: Corti, Alessio, Vistoli, Angelo: Twisted bundles and admissible covers. Commun. Algebra 31(8), 3547–3618 (2003)
    • APS23. Abreu, A.: Pacini, Marco, Secco, Matheus: On moduli spaces of roots in algebraic and tropical geometry. J. Algebra 634, 832–872 (2023)
    • AV02. Abramovich, D.: Vistoli, Angelo: Compactifying the space of stable maps. J. Amer. Math. Soc. 15(1), 27–75 (2002)
    • BBC+22. Brandt, M., Bruce, J., Chan, M., Melo, M., Moreland, G., Wolfe, C.: On the top-weight rational cohomology of Ag. Geom. Topol....
    • BCK23. Brandt, M., Chan, M., Kannan, S.: On the weight zero compactly supported cohomology of Hg,n. Forum Math. Sigma 12, No. e67, 37 pp (2024)
    • BR11. Bertin, José, Romagny, M.: Champs de Hurwitz. Mém. Soc. Math. Fr. (N.S.), 125-126:219, (2011)
    • CGP21. Chan, M., Galatius, Søren., Payne, S.: Tropical curves, graph complexes, and top weight cohomology of Mg. J. Amer. Math. Soc. 34(2),...
    • CGP22. Chan, M., Galatius, S., Payne, S.: Topology of moduli spaces of tropical curves with marked points. In Facets of algebraic geometry....
    • CMR16. Cavalieri, R. Markwig, H., Ranganathan, D.: Tropicalizing the space of admissible covers. Math. Ann. 364(3–4), 1275–1313 (2016)
    • Dèb99. Dèbes, Pierre: Arithmétique et espaces de modules de revêtements. In Number theory in progress, Vol. 1 (Zakopane-Ko´scielisko, 1997),...
    • Del75. Deligne, P.: Poids dans la cohomologie des variétés algébriques. In Proceedings of the International Congress of Mathematicians (Vancouver,...
    • DM69. Deligne, P., Mumford, D.: The irreducibility of the space of curves of given genus. Inst. Hautes Études Sci. Publ. Math. 36, 75–109...
    • DR73. Deligne, P., Rapoport, M.: Les schémas de modules de courbes elliptiques. In Pierre Deligne and Willem Kuijk, editors, Modular Functions...
    • EH87. Eisenbud, D. Harris, J.: The Kodaira dimension of the moduli space of curves of genus ≥ 23. Invent. Math. 90(2), 359–387 (1987)
    • Fri77. Fried, M.: Fields of definition of function fields and Hurwitz families-groups as Galois groups. Comm. Algebra 5(1), 17–82 (1977)
    • Gal22. Galeotti, M.: Moduli of G-covers of curves: Geometry and singularities. Ann. Inst. Fourier 72(6), 2191–2240 (2022)
    • Gro61. Grothendieck, A.: Techniques de construction en géométrie analytique I. Description axiomatique de l’espace de Teichmüller et de ses...
    • Gro71. Grothendieck, A.: Revêtements étales et groupe fondamental (SGA 1), volume 224 of Lecture notes in mathematics. Springer-Verlag, (1971)
    • GT01. Jonathan, L.,Gross and Thomas W. Tucker. Topological graph theory. Dover Publications Inc, Mineola, NY (2001) Hel23. Helminck, P.A.:...
    • HM82. Harris, J., Mumford, D.: On the Kodaira dimension of the moduli space of curves. Invent. Math., 67(1):23–88, With an appendix by William...
    • KM85. Katz, N.M., Mazur, B.: Arithmetic Moduli of Elliptic Curves. (AM-108), Volume 108. Princeton University Press, Princeton, (1985)
    • LUZ23. Len, Y., Ulirsch, M., Zakharov, D.: Abelian tropical covers. Mathematical Proceedings of the Cambridge Philosophical Society, page...
    • Moc95. Mochizuki, S.: The geometry of the compactification of the Hurwitz scheme. Publ. Res. Inst. Math. Sci. 31(3), 355–441 (1995)
    • Mum65. Mumford, D.: Picard groups of moduli problems. In Arithmetical Algebraic Geometry (Proc. Conf. Purdue Univ., 1963), pages 33–81. Harper...
    • Mum83. Mumford, D.: Towards an enumerative geometry of the moduli space of curves. In Arithmetic and geometry, Vol. II, volume 36 of Progr....
    • PP06. Pervova, E., Petronio, C.: On the existence of branched coverings between surfaces with prescribed branch data. I. Algebr. Geom. Topol....
    • PR87. Pólya, G., Read, R.C.: Combinatorial enumeration of groups, graphs, and chemical compounds. Springer-Verlag, New York, Pólya’s contribution...

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno