Ir al contenido

Documat


Beilinson–Drinfeld Schubert varieties of parahoric group schemes and twisted global Demazure modules

  • Jiuzu Hong [1] ; Huanhuan Yu [2]
    1. [1] Department of Mathematics, University of North Carolina, USA
    2. [2] Beijing International Center for Mathematical Research, Peking University, People’s Republic of China
  • Localización: Selecta Mathematica, New Series, ISSN 1022-1824, Vol. 31, Nº. 1, 2025
  • Idioma: inglés
  • DOI: 10.1007/s00029-024-01011-8
  • Enlaces
  • Resumen
    • Let G be a parahoric Bruhat–Tits group scheme arising from a -curve C and a certain -action on a simple algebraic group G for some finite cyclic group . We prove the flatness of Beilinson–Drinfeld Schubert varieties of G, we determine the rigidified Picard group of the Beilinson–Drinfeld Grassmannian GrG,Cn of G, and we establish the factorizable and equivariant structures on rigidified line bundles over GrG,Cn . We develop an algebraic theory of global Demazure modules of twisted current algebras, and using our geometric results we prove that when C = A1, the spaces of global sections of line bundles on BD Schubert varieties of G are dual to the twisted global Demazure modules. This generalizes the work of Dumanski–Feigin–Finkelberg in the untwisted setting.

  • Referencias bibliográficas

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno