Ir al contenido

Documat


A Platform for Swimming Pool Detection and Legal Verification Using a Multi-Agent System and Remote Image Sensing

  • Héctor Sánchez San Blas [1] ; Antía Carmona Balea [1] ; André Sales Mendes [1] ; Luís Augusto Silva [1] ; Gabriel Villarrubia González [1] Árbol académico
    1. [1] Universidad de Salamanca

      Universidad de Salamanca

      Salamanca, España

  • Localización: IJIMAI, ISSN-e 1989-1660, Vol. 8, Nº. 4, 2023, págs. 153-165
  • Idioma: inglés
  • DOI: 10.9781/ijimai.2023.01.002
  • Enlaces
  • Resumen
    • Spain is the second country in Europe with the most swimming pools. However, the legal literature estimates that 20% of swimming pools are not declared or irregular.The administration has a corps of people who manually analyze satellite or drone images to detect illegal or irregular structures. This method is costly in terms of effort and time, and it is also a method based on the subjectivity of the person carrying it out. This proposal aims to design a platform that allows the automatic detection of irregular pools. Using geographic information tools (GIS) based on orthophotography, combined with advanced machine learning techniques for object detection, allows this work. Furthermore, using a multi-agent architecture allows the system to be modular, with the possibility of the different parts of the system working together, balancing the workload. The proposed system has been validated by testing it in different towns in Spain. The system has shown promising results in performing this task, with an F1-Score of 97.1%.

  • Referencias bibliográficas
    • D. Tien, T. Rudra, A. B. Hope, “Swimming pool identification from digital sensor imagery using SVM,” Proceedings - Digital Image Computing...
    • W. Passos, E. Silva, S. Netto, J. Martins, Y. Costa, G. Araujo, A. Lima, “Detecção de Potenciais Focos do Aedes aegypti em Vídeos Aéreos Usando...
    • P. C. Gray, K. C. Bierlich, S. A. Mantell, A. S. Friedlaender, J. A. Goldbogen, D. W. Johnston, “Drones and convolutional neural networks...
    • M. I. Habibie, T. Ahamed, R. Noguchi, S. Matsushita, “Deep Learning Algorithms to determine Drought prone Areas Using Remote Sensing and GIS,”...
    • I. Goodfellow, Y. Bengio, A. Courville, Deep Learning. MIT Press, 2016. http://www.deeplearningbook.org.
    • R. Girshick, J. Donahue, T. Darrell, J. Malik, “Rich feature hierarchies for accurate object detection and semantic segmentation,” Proceedings...
    • R. Girshick, “Fast R-CNN,” Proceedings of the IEEE International Conference on Computer Vision, vol. 2015 Inter, pp. 1440–1448, 2015, doi:...
    • H. Rampersad, “Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks,” Total Performance Scorecard, pp. 159–183,...
    • K. He, G. Gkioxari, P. Dollár, R. Girshick, “Mask r- cnn,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 42, no. 2,...
    • R. Girshick, I. Radosavovic, G. Gkioxari, P. Dollár, K. He, “Detectron.” https://github.com/ facebookresearch/detectron, 2018.
    • Y. Wu, A. Kirillov, F. Massa, W.-Y. Lo, R. Girshick, “Detectron2.” https://github.com/ facebookresearch/detectron2, 2019.
    • W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C. Y. Fu, A. C. Berg, “SSD: Single Shot MultiBox Detector,” 12 2015, doi: 10.1007/978-3-319-46448-0_2.
    • J. Redmon, S. Divvala, R. Girshick, A. Farhadi, “You only look once: Unified, real-time object detection,” Proceedings of the IEEE Computer...
    • J. Redmon, A. Farhadi, “YOLO9000: Better, faster, stronger,” Proceedings - 30th IEEE Conference on Computer Vision and Pattern Recognition,...
    • J. Redmon, A. Farhadi, “Yolov3: An incremental improvement,” CoRR, vol. abs/1804.02767, 2018, doi: http://arxiv.org/abs/1804.02767.
    • A. Bochkovskiy, C. Wang, H. M. Liao, “Yolov4: Optimal speed and accuracy of object detection,” CoRR, vol. abs/2004.10934, 2020, doi: https://arxiv.org/abs/2004.10934.
    • S.-H. Chen, C.-W. Wang, I.-H. Tai, K.-P. Weng, Y.-Chen, K.-S. Hsieh, “Modified yolov4-densenet algorithm for detection of ventricular septal...
    • L. A. Silva, H. S. S. Blas, D. P. García, A. S. Mendes, G. V. González, “An architectural multi-agent system for a pavement monitoring system...
    • C. Galindo, P. Moreno, J. Gonzalez, V. Arévalo, “Swimming pools localization in colour high- resolution satellite images,” vol. 4, pp. IV–510–IV–513,...
    • M. Kim, J. B. Holt, R. J. Eisen, K. Padgett, W. K. Reisen, J. B. Croft, “Detection of swimming pools by geographic object-based image analysis...
    • B. Rodríguez-Cuenca, M. C. Alonso, “Semi-automatic detection of swimming pools from aerial high- resolution images and LIDAR data,” Remote...
    • C. Ferner, G. Eibl, A. Unterweger, S. Burkhart, S. Wegenkittl, “Pool detection from smart metering data with convolutional neural networks,”...
    • Z. Domozi, A. Molnar, “Surveying private pools in suburban areas with neural network based on drone photos,” EUROCON 2019 - 18th International...
    • B. Lima, L. Ferreira, J. M. Moura, “Helping to detect legal swimming pools with deep learning and data visualization,” Procedia Computer Science,...
    • C. Zato, G. Villarrubia, A. Sanchez, I. Barri, E. Rubión, A. Fernández, C. Sánchez, J. Cabo, T. Álamos, J. Sanz, J. Seco, J. Bajo, J. Corchado...
    • J. Schwartz, et al., “Bing maps tile system,” 2009. http://msdn.microsoft.com/en-us/library/ bb259689.aspx, (accessed in: 13/09/2021).
    • “Google maps.” https://maps.google.com, (accessed in: 13/09/2021).
    • “Open street maps.” https://www.openstreetmap. org/, (accessed in: 13/09/2021).
    • “Esri world imagery.” https://www.arcgis. com/apps/mapviewer/index.html?layers= 10df2279f9684e4a9f6a7f08febac2a9, (accessed in: 13/09/2021).
    • “Wikimedia maps.” https://maps.wikimedia.org/, (accessed in: 13/09/2021).
    • “Nasa gibs.” https://map1.vis.earthdata.nasa.gov/, (accessed in: 13/09/2021).
    • “Carto light.” https://cartodb-basemaps-c. global.ssl.fastly.net/, (accessed in: 13/09/2021).
    • “Stamen toner b & w.” https://stamen.com/, (accessed in: 13/09/2021).
    • “Sentinel.” https://www.sentinel-hub.com/, (accessed in: 13/09/2021).
    • “Roboflow.” https://roboflow.com, (accessed in: 13/09/2021).
    • “Swimming Pool Detect.” https://github.com/ Hectorssb/SwimmingPoolDetection, (accessed in: 02/11/2022).
    • “YoloV4 cfg.” https://github.com/Hectorssb/ SwimmingPoolDetection/blob/main/Yolov4/cfg/ yolov4-obj.cfg, (accessed in: 02/11/2022).
    • “Train Mask-RCNN Model on Custom Data.” https://colab.research.google.com/drive/1rBuhT8AjP2td20otdUnpuF7CCMmjRb4O, (accessed in: 13/09/2021).
    • M. Everingham, L. Van Gool, C. K. I. Williams, Winn, A. Zisserman, “The PASCAL Visual Object Classes Challenge 2012 (VOC2012) Results.” http://www.pascal-network.org/challenges/VOC/voc2012/workshop/index.html.
    • “Detectron2 Beginner’s Tutorial.” https://colab.research.google.com/drive/1n-_ nulKMxxCF6Jg4WMw20mO8R6rqC078, (accessed in: 13/09/2021).
    • T.-Y. Lin, M. Maire, S. Belongie, L. Bourdev, R. Girshick, J. Hays, P. Perona, D. Ramanan, C. L. Zitnick, P. Dollár, “Microsoft coco: Common...
    • Detectron2, “faster_rcnn_X_101_32x8d_FPN_3x.” https://github.com/facebookresearch/ detectron2/blob/main/configs/COCO-Detection/ faster_rcnn_X_101_32x8d_FPN_3x.yaml,...

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno