Ir al contenido

Documat


Colored line ensembles for stochastic vertex models

  • Amol Aggarwal [1] ; Alexei Borodin [2]
    1. [1] Columbia University

      Columbia University

      Estados Unidos

    2. [2] Massachusetts Institute of Technology

      Massachusetts Institute of Technology

      City of Cambridge, Estados Unidos

  • Localización: Selecta Mathematica, New Series, ISSN 1022-1824, Vol. 30, Nº. 5, 2024
  • Idioma: inglés
  • DOI: 10.1007/s00029-024-00989-5
  • Enlaces
  • Resumen
    • In this paper we assign a family of n coupled line ensembles to any Uq (sln+1) colored stochastic fused vertex model, which satisfies two properties. First, the joint law of their top curves coincides with that of the colored height functions for the vertex model. Second, the n line ensembles satisfy an explicit Gibbs property prescribing their laws if all but a few of their curves are conditioned upon. We further describe several examples of such families of line ensembles, including the ones for the colored stochastic sixvertex and q-boson models. The appendices (which may be of independent interest) include an explanation of how the Uq (sln+1) colored stochastic fused vertex model degenerates to the log-gamma polymer, and an effective rate of convergence of the colored stochastic six-vertex model to the colored ASEP.

  • Referencias bibliográficas
    • 1. Aggarwal, A.: Convergence of the stochastic six-vertex model to the ASEP: stochastic six-vertex model and ASEP. Math. Phys. Anal. Geom....
    • 2. Aggarwal, A.: Current fluctuations of the stationary ASEP and six-vertex model. Duke Math. J. 167(2), 269–384 (2018)
    • 3. Aggarwal, A.: Limit shapes and local statistics for the stochastic six-vertex model. Comm. Math. Phys. 376(1), 681–746 (2020)
    • 4. Aggarwal, A., Borodin, A., Bufetov, A.: Stochasticization of solutions to the Yang-Baxter equation. Ann. Henri Poincaré 20(8), 2495–2554...
    • 5. Aggarwal, A., Borodin, A., Wheeler, M.: Colored fermionic vertex models and symmetric functions. Comm. Am. Math. Soc. 3, 400–630 (2023)
    • 6. Aggarwal, A., Corwin, I., Hegde, M.: Scaling limit of the colored ASEP and stochastic six-vertex model. arXiv:2403.01341
    • 7. Aggarwal, A., Huang, J.: Strong characterization for the Airy line ensemble. arXiv:2308.11908
    • 8. Aggarwal, A., Nicoletti, M., Petrov, L.: Colored interacting particle systems on the ring: Stationary measures from Yang–Baxter equation....
    • 9. Barraquand, G., Borodin, A., Corwin, I., Wheeler, M.: Stochastic six-vertex model in a half-quadrant and half-line open asymmetric simple...
    • 10. Barraquand, G., Corwin, I., Das, S.: KPZ exponents for the half-space log-gamma polymer. arXiv:2310.10019
    • 11. Barraquand, G., Corwin, I., Dimitrov, E.: Spatial tightness at the edge of Gibbsian line ensembles. Comm. Math. Phys. 397(3), 1309–1386...
    • 12. Baryshnikov, Y.: GUEs and queues. Probab. Theory Related Fields 119(2), 256–274 (2001)
    • 13. Bazhanov, V.V.: Trigonometric solutions of triangle equations and classical Lie algebras. Phys. Lett. B 159(4–6), 321–324 (1985)
    • 14. Borodin, A.: On a family of symmetric rational functions. Adv. Math. 306, 973–1018 (2017)
    • 15. Borodin, A., Bufetov, A., Wheeler, M.: Between the stochastic six vertex model and Hall-Littlewood processes. arXiv:1611.09486
    • 16. Borodin, A., Corwin, I.: Macdonald processes. Probab. Theory Related Fields 158(1–2), 225–400 (2014)
    • 17. Borodin, A., Corwin, I.: Discrete time q-TASEPs. Int. Math. Res. Not. IMRN 2, 499–537 (2015)
    • 18. Borodin, A., Corwin, I., Gorin, V.: Stochastic six-vertex model. Duke Math. J. 165(3), 563–624 (2016)
    • 19. Borodin, A., Ferrari, P.L.: Anisotropic growth of random surfaces in 2 + 1 dimensions. Comm. Math. Phys. 325(2), 603–684 (2014)
    • 20. Borodin, A., Gorin, V., Wheeler, M.: Shift-invariance for vertex models and polymers. Proc. Lond. Math. Soc. (3) 124(2), 182–299 (2022)
    • 21. Borodin, A., Petrov, L.: Nearest neighbor Markov dynamics on Macdonald processes. Adv. Math. 300, 71–155 (2016)
    • 22. Borodin, A., Petrov, L.: Higher spin six vertex model and symmetric rational functions. Selecta Math. (N.S.) 24(2), 751–874 (2018)
    • 23. Borodin, A., Wheeler, M.: Observables of coloured stochastic vertex models and their polymer limits. Probab. Math. Phys. 1(1), 205–265...
    • 24. Borodin, A., Wheeler, M.: Spin q-Whittaker polynomials. Adv. Math. 376, 107449 (2021)
    • 25. Borodin, A., Wheeler, M.: Colored stochastic vertex models and their spectral theory. Astérisque 437, 225 (2022)
    • 26. Bosnjak, G., Mangazeev, V.V.: Construction of R-matrices for symmetric tensor representations related to Uq (sl!n). J. Phys. A 49(49),...
    • 27. Bufetov, A., Mucciconi, M., Petrov, L.: Yang-Baxter random fields and stochastic vertex models. Adv. Math. 388, 107865 (2021)
    • 28. Bufetov, A., Petrov, L.: Yang-Baxter field for spin Hall-Littlewood symmetric functions. Forum Math. Sigma 7, e39 (2019)
    • 29. Busani, O., Seppäläinen, T., Sorensen, E.: Scaling limit of multi-type invariant measures via the directed landscape. arXiv:2310.09824
    • 30. Busani, O., Seppäläinen, T., Sorensen, E.: The stationary horizon and semi-infinite geodesics in the directed landscape. arXiv:2203.13242
    • 31. Cantini, L.: Algebraic Bethe ansatz for the two species ASEP with different hopping rates. J. Phys. A 41(9), 095001 (2008)
    • 32. Chen, Z., de Gier, J., Hiki, I., Sasamoto, T., Usui, M.: Limiting current distribution for a two species asymmetric exclusion process....
    • 33. Corwin, I., Dimitrov, E.: Transversal fluctuations of the ASEP, stochastic six vertex model, and HallLittlewood Gibbsian line ensembles....
    • 34. Corwin, I., Ghosal, P., Hammond, A.: KPZ equation correlations in time. Ann. Probab. 49(2), 832–876 (2021)
    • 35. Corwin, I., Hammond, A.: Brownian Gibbs property for Airy line ensembles. Invent. Math. 195(2), 441–508 (2014)
    • 36. Corwin, I., Hammond, A.: KPZ line ensemble. Probab. Theory Related Fields 166(1–2), 67–185 (2016)
    • 37. Corwin, I., Matveev, K., Petrov, L.: The q-Hahn PushTASEP. Int. Math. Res. Not. IMRN 3, 2210–2249 (2021)
    • 38. Corwin, I., O’Connell, N., Seppäläinen, T., Zygouras, N.: Tropical combinatorics and Whittaker functions. Duke Math. J. 163(3), 513–563...
    • 39. Corwin, I., Petrov, L.: Stochastic higher spin vertex models on the line. Comm. Math. Phys. 343(2), 651–700 (2016)
    • 40. Corwin, I., Seppäläinen, T., Shen, H.: The strict-weak lattice polymer. J. Stat. Phys. 160(4), 1027–1053 (2015)
    • 41. Dauvergne, D., Ortmann, J., Virág, B.: The directed landscape. Acta Math. 229(2), 201–285 (2022)
    • 42. Elkies, N., Kuperberg, G., Larsen, M., Propp, J.: Alternating-sign matrices and domino tilings. II. J. Algebraic Combin. 1(3), 219–234...
    • 43. Ganguly, S., Hedge, M., Zhang, L.: Brownian bridge limit of path measures in the upper tail of KPZ models. arXiv:2311.12009
    • 44. Ganguly, S., Hegde, M.: Sharp upper tail estimates and limit shapes for the KPZ equation via the tangent method. arXiv:2208.08922
    • 45. Gasper, G., Rahman, M.: Basic hypergeometric series. Encyclopedia of Mathematics and its Applications, vol. 96, 2nd edn. Cambridge University...
    • 46. Gwa, L.-H., Spohn, H.: Six-vertex model, roughened surfaces, and an asymmetric spin Hamiltonian. Phys. Rev. Lett. 68(6), 725–728 (1992)
    • 47. Haglund, J., Mason, S., Remmel, J.: Properties of the nonsymmetric Robinson-Schensted-Knuth algorithm. J. Algebraic Combin. 38(2), 285–327...
    • 48. Hammond, A.: Modulus of continuity of polymer weight profiles in Brownian last passage percolation. Ann. Probab. 47(6), 3911–3962 (2019)
    • 49. Hammond, A.: A patchwork quilt sewn from Brownian fabric: regularity of polymer weight profiles in Brownian last passage percolation....
    • 50. Hammond, A.: Exponents governing the rarity of disjoint polymers in Brownian last passage percolation. Proc. Lond. Math. Soc. (3) 120(3),...
    • 51. Hammond, A.: Brownian regularity for the Airy line ensemble, and multi-polymer watermelons in Brownian last passage percolation. Mem....
    • 52. Harris, T.E.: Nearest-neighbor Markov interaction processes on multidimensional lattices. Adv. Math. 9, 66–89 (1972)
    • 53. Harris, T.E.: Additive set-valued Markov processes and graphical methods. Ann. Probab. 6(3), 355–378 (1978)
    • 54. He, J.: Boundary current fluctuations for the half space ASEP and six vertex model. arXiv:2303.16335
    • 55. He, J.: Shift invariance of half space integrable models. Preprint, arXiv:2205.13029
    • 56. Jimbo, M.: Quantum R matrix for the generalized Toda system. Comm. Math. Phys. 102(4), 537–547 (1986)
    • 57. Jockusch, W., Propp, J., Shor, P.: Random domino tilings and the arctic circle theorem. (1998). arXiv:math/9801068 [math.CO]
    • 58. Johansson, K.: Discrete polynuclear growth and determinantal processes. Comm. Math. Phys. 242(1– 2), 277–329 (2003)
    • 59. Johnston, S.G.G., O’Connell, N.: Scaling limits for non-intersecting polymers and Whittaker measures. J. Stat. Phys. 179(2), 354–407 (2020)
    • 60. Kardar, M., Parisi, G., Zhang, Y.-C.: Dynamic scaling of growing interfaces. Phys. Rev. Lett. 56(9), 889 (1986)
    • 61. Kirillov, A.N.: Introduction to tropical combinatorics. In: Physics and combinatorics. 2000 (Nagoya), pp. 82–150. World Sci. Publ, River...
    • 62. Kulish, P.P., Reshetikhin, N.Y., Sklyanin, E.K.: Yang-Baxter equations and representation theory. I. Lett. Math. Phys. 5(5), 393–403 (1981)
    • 63. Kuniba, A., Mangazeev, V.V., Maruyama, S., Okado, M.: Stochastic R matrix for Uq (A(1) n ). Nuclear Phys. B 913, 248–277 (2016)
    • 64. Lin, Y.: Classification of stationary distributions for the stochastic vertex models. Electron. J. Probab. 28, 1 (2023)
    • 65. Mangazeev, V.V.: On the Yang-Baxter equation for the six-vertex model. Nuclear Phys. B 882, 70–96 (2014)
    • 66. Mason, S.: A decomposition of Schur functions and an analogue of the Robinson–Schensted–Knuth algorithm. Sém. Lothar. Combin., 57:24,...
    • 67. Matetski, K., Quastel, J., Remenik, D.: The KPZ fixed point. Acta Math. 227(1), 115–203 (2021)
    • 68. Matveev, K., Petrov, L.: q-randomized Robinson-Schensted-Knuth correspondences and random polymers. Ann. Inst. Henri Poincaré D 4(1),...
    • 69. Mucciconi, M., Petrov, L.: Spin q-Whittaker polynomials and deformed quantum Toda. Comm. Math. Phys. 389(3), 1331–1416 (2022)
    • 70. Nica, M.: Intermediate disorder limits for multi-layer semi-discrete directed polymers. Electron. J. Probab. 26, 1–50 (2021)
    • 71. Noumi, M., Yamada, Y.: Tropical Robinson–Schensted–Knuth correspondence and birational Weyl group actions. In Representation theory of...
    • 72. O’Connell, N.: A path-transformation for random walks and the Robinson-Schensted correspondence. Trans. Am. Math. Soc. 355(9), 3669–3697...
    • 73. O’Connell, N.: Directed polymers and the quantum Toda lattice. Ann. Probab. 40(2), 437–458 (2012)
    • 74. O’Connell, N., Warren, J.: A multi-layer extension of the stochastic heat equation. Comm. Math. Phys. 341(1), 1–33 (2016)
    • 75. O’Connell, N., Yor, M.: Brownian analogues of Burke’s theorem. Stochastic Process. Appl. 96(2), 285–304 (2001)
    • 76. Okounkov, A., Reshetikhin, N.: Correlation function of Schur process with application to local geometry of a random 3-dimensional Young...
    • 77. Prähofer, M., Spohn, H.: Scale invariance of the PNG droplet and the Airy process. vol. 108, pp. 1071–1106 (2002). Dedicated to David...
    • 78. Quastel, J., Sarkar, S.: Convergence of exclusion processes and the KPZ equation to the KPZ fixed point. J. Amer. Math. Soc. 36(1), 251–289...
    • 79. Rost, H.: Non-equilibrium behaviour of a many particle process: density profile and local equilibria. Z. Wahrsch. Verw. Gebiete 58(1),...
    • 80. Sasamoto, T., Wadati, M.: Exact results for one-dimensional totally asymmetric diffusion models. J. Phys. A 31(28), 6057–6071 (1998)
    • 81. Seppäläinen, T.: Scaling for a one-dimensional directed polymer with boundary conditions. Ann. Probab. 40(1), 19–73 (2012)
    • 82. Warren, J.: Dyson’s Brownian motions, intertwining and interlacing. Electron. J. Probab. 12(19), 573– 590 (2007)
    • 83. Wu, X.: Brownian regularity for the KPZ line ensemble. arXiv:2106.08052
    • 84. Wu, X.: The KPZ equation and the directed landscape. arXiv:2301.00547
    • 85. Wu, X.: Tightness of discrete Gibbsian line ensembles with exponential interaction Hamiltonians. Ann. Inst. Henri Poincaré Probab. Stat....
    • 86. Yang, Z.: Stationary measures for higher spin vertex models on a strip. arXiv:2309.04897

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno