Ir al contenido

Documat


On compactifications of Mg,n with colliding markings

  • Vance Blankers [1] ; Sebastian Bozlee [2]
    1. [1] Northeastern University

      Northeastern University

      City of Boston, Estados Unidos

    2. [2] Fordham University

      Fordham University

      Estados Unidos

  • Localización: Selecta Mathematica, New Series, ISSN 1022-1824, Vol. 30, Nº. 5, 2024
  • Idioma: inglés
  • DOI: 10.1007/s00029-024-00994-8
  • Enlaces
  • Resumen
    • In this paper, we study all ways of constructing modular compactifications of the moduli space Mg,n of n-pointed smooth algebraic curves of genus g by allowing markings to collide. We find that for any such compactification, collisions of markings are controlled by a simplicial complex which we call the collision complex. Conversely, we identify modular compactifications of Mg,n with essentially arbitrary collision complexes, including complexes not associated to any space of weighted pointed stable curves. These moduli spaces classify the modular compactifications of Mg,n by nodal curves with smooth markings as well as the modular compactifications of M1,n with Gorenstein curves and smooth markings. These compactifications generalize previous constructions given by Hassett, Smyth, and Bozlee–Kuo–Neff.

  • Referencias bibliográficas
    • 1. Ascher, K., Dubé, C., Gershenson, D., Hou, E.: Enumerating Hassett’s wall and chamber decomposition of the moduli space of weighted stable...
    • 2. Alexeev, V., Michael Guy, G.: Moduli of weighted stable maps and their gravitational descendants. J. Inst. Math. Jussieu 7(3), 425–456...
    • 3. Battistella, L.: Modular compactifications of M2,n with Gorenstein singularities. Algebra & number theory (to appear). arXiv:1906.06367
    • 4. Battistella, L., Bozlee, S.: Hyperelliptic Gorenstein curves and logarithmic differentials. arXiv:2307.03947 (2023)
    • 5. Blankers, V., Cavalieri, R.: Wall-crossings for Hassett descendant potentials. Int. Math. Res. Not. 2022, 898–927 (2022)
    • 6. Bozlee, S., Kuo, B., Neff, A.: A classification of modular compactifications of the space of pointed elliptic curves by Gorenstein curves....
    • 7. Bozlee, S.: An application of logarithmic geometry to moduli of curves of genus greater than one. Ph.D. thesis, University of Colorado...
    • 8. Bozlee, S.: Contractions of subcurves of families of log curves. Comm. Algebra 49(11), 4616–4660 (2021)
    • 9. Cavalieri, R., Chan, M., Ulirsch, M., Wise, J.: A moduli stack of tropical curves. Forum Math. Sigma 8, e23 (2020)
    • 10. Deligne, P., Mumford, D.: The irreducibility of the space of curves of given genus. Publ. Math. l’IHÉS 36, 75–109 (1969)
    • 11. Fry, A.: Moduli spaces of rational graphically stable curves. Ph.D. thesis, Colorado State University (2021)
    • 12. Fedorchuk, M., Smyth, D.I.: Alternate compactifications of moduli spaces of curves. Handb. Moduli 24, 331–414 (2010)
    • 13. Hassett, B.: Moduli spaces of weighted pointed stable curves. Adv. Math. 173, 316–352 (2003)
    • 14. Kapranov, Mikhail: Chow quotients of Grassmannians I. In: Gelfand S, Gindikin S (eds) I. M. Gelfand Seminar, Advanced Soviet Mathematics...
    • 15. Kapranov, M.: Veronese curves and Grothendieck-Knudsen moduli space M0,n. J. Algebraic Geom. 2(2), 239–262 (1993)
    • 16. Kato, K: Logarithmic structures of Fontaine-Illusie, algebraic analysis, geometry, and number theory, pp. 191–224 (1989)
    • 17. Kato, F.: Log smooth deformation and moduli of log smooth curves. Int. J. Math. 11(2), 215–232 (2000)
    • 18. Keel, S.: Intersection theory of moduli space of stable n-pointed curves of genus zero. Trans. Am. Math. Soc. 330, 545–574 (1992)
    • 19. Knudsen, F., Mumford, D.: The projectivity of the moduli space of stable curves. I, preliminaries on “det” and “div”. Math. Scand. 39(1),...
    • 20. Knudsen, F.: The projectivity of the moduli space of stable curves. II, the stacks Mg,n. Math. Scand. 52(2), 161–199 (1983)
    • 21. Knudsen, F.: The projectivity of the moduli space of stable curves. III, the line bundles on Mg,n, and a proof of the projectivity of...
    • 22. Losev, A., Manin, Y.: New moduli spaces of pointed curves and pencils of flat connections. Mich. Math. J. 48(1), 443–472 (2000)
    • 23. Moon, H.-B., Summers, C., von Albade, J., Xie, R.: Birational contractions of M0,n and combinatorics of extremal assignments. J. Algebraic...
    • 24. Niels, B., Vistoli, A.: Parabolic sheaves on logarithmic schemes. Adv. Math. 231(3–4), 1327–1363 (2012)
    • 25. OEIS Foundation Inc. The on-line encyclopedia of integer sequences. https://oeis.org/A307249. Accessed 10 Aug 2022
    • 26. Parker, K.: Semistable modular compactifications of moduli spaces of genus one curves. Ph.D. thesis, University of Colorado (2017)
    • 27. Ranganathan, D., Santos-Parker, K., Wise, J.: Moduli of stable maps in genus one and logarithmic geometry I. Geom. Topol. 23, 3315–3366...
    • 28. Schubert, D.: A new compactification of the moduli space of curves. Compos. Math. 78(3), 297–313 (1991)
    • 29. Smyth, D.: Modular compactifications of the space of pointed elliptic curves I. Compos. Math. 147(3), 877–913 (2011)
    • 30. Smyth, D.: Towards a classification of modular compactifications of Mg,n. Invent. Math. 192(2), 459–503 (2013)
    • 31. Smyth, D.: Intersections of ψ-classes on M1,n(m). Trans. Am. Math. Soc. 372, 8679–8707 (2019)

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno