Ir al contenido

Documat


Stable homology isomorphisms for the partition and Jones annular algebras

  • Guy Boyde [1]
    1. [1] Utrecht University

      Utrecht University

      Países Bajos

  • Localización: Selecta Mathematica, New Series, ISSN 1022-1824, Vol. 30, Nº. 5, 2024
  • Idioma: inglés
  • DOI: 10.1007/s00029-024-00992-w
  • Enlaces
  • Resumen
    • We show that the homology of the Jones annular algebras is isomorphic to that of the cyclic groups below a line of gradient 1/2 We also show that the homology of the partition algebras is isomorphic to that of the symmetric groups below a line of gradient 1, strengthening a result of Boyd–Hepworth–Patzt. Both isomorphisms hold in a range exceeding the stability range of the algebras in question. Along the way, we prove the usual odd-strand and invertible parameter results for the Jones annular algebras.

  • Referencias bibliográficas
    • 1. Bott, R., Tu, L.W.:Differential forms in algebraic topology. In: Graduate Texts in Mathematics, vol. 82. Springer, New York-Berlin (1982)
    • 2. Boyd, R., Hepworth, R.: The homology of the Temperley-Lieb algebras. Geom. Topol. 28(3), 1437– 1499 (2024).
    • 3. Boyd, R., Hepworth, R.: Combinatorics of injective words for Temperley–Lieb algebras. J. Combin. Theory Ser. A 181, 105446 (2021)
    • 4. Boyd, R., Hepworth, R., Patzt, P.: The homology of the Brauer algebras. Sel. Math. 27, 85 (2021)
    • 5. Boyd, R., Hepworth, R., Patzt, P.: The homology of the partition algebras. Pacific J. Math. 327(1), 1–27 (2023).
    • 6. Boyde, G.: Idempotents and homology of diagram algebras. Math. Ann. (2024). https://doi.org/10. 1007/s00208-024-02960-3
    • 7. Boyde, G.: Homological stability and Graham–Lehrer cellular algebras. (2023). arXiv: 2310.00373
    • 8. Brauer, R.: On algebras which are connected with the semisimple continuous groups. Ann. Math. 38(4), 857–872 (1937)
    • 9. Graham, J.J., Lehrer, G.I.: Cellular algebras. Invent. Math. 123(1), 1–34 (1996)
    • 10. Halverson, T., delMas, E.: Representations of the Rook–Brauer algebra. Comm. Algebra 42(1), 423– 443 (2014)
    • 11. Hepworth, R.: Homological stability for Iwahori–Hecke algebras. J. Topol. 15(4), 2174–2215 (2022)
    • 12. Jones, V.F.R.: Quotient of the affine Hecke algebra in the Brauer algebra. Enseign. Math. 40, 313–344 (1994)
    • 13. Jones, V.F.R.: The Potts model and the symmetric group. In: Subfactors (Kyuzeso, 1993),World Scientific Publishing, River Edge, NJ, pp....
    • 14. Kreweras, G.: Sur les partitions non croisées d’un cycle. Discrete Math. 1(4), 333–350 (1972)
    • 15. Martin, P.: Temperley–Lieb algebras for nonplanar statistical mechanics—the partition algebra construction. J. Knot Theory Ramif. 3(1),...
    • 16. Martin, P., Mazorchuk, V.: On the representation theory of partial Brauer algebras. Q. J. Math. 65(1), 225–247 (2014)
    • 17. Moselle, I.: Homological stability for Iwahori-Hecke algebras of type Bn. J. Pure Appl. Algebra. 228(5) (2024)
    • 18. Sroka, R.J.: The homology of a Temperley–Lieb algebra on an odd number of strands. Algebr. Geom. Topol. 24(6), 3527–3541 (2024).
    • 19. Temperley, H.N.V., Lieb, E.H.: Relations between the percolation and colouring problem and other graph-theoretical problems associated...
    • 20. Xi, C.: Partition algebras are cellular. Compos. Math. 119(1), 99–109 (1999)

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno