Ir al contenido

Documat


Cyclotomic expansions for glN link invariants via interpolation Macdonald polynomials

  • Anna Beliakova [1] ; Eugene Gorsky [2]
    1. [1] University of Zurich

      University of Zurich

      Zürich, Suiza

    2. [2] University of California System

      University of California System

      Estados Unidos

  • Localización: Selecta Mathematica, New Series, ISSN 1022-1824, Vol. 30, Nº. 5, 2024
  • Idioma: inglés
  • DOI: 10.1007/s00029-024-00990-y
  • Enlaces
  • Resumen
    • In this paper we construct a new basis for the cyclotomic completion of the center of the quantum glN in terms of the interpolation Macdonald polynomials. Then we use a result of Okounkov to provide a dual basis with respect to the quantum Killing form (or Hopf pairing). The main applications are: 1) cyclotomic expansions for the glN Reshetikhin–Turaev link invariants and the universal glN knot invariant; 2) an explicit construction of the unified glN invariants for integral homology 3-spheres using universal Kirby colors. These results generalize those of Habiro for sl2. In addition, we give a simple proof of the fact that the universal glN invariant of any evenly framed link and the universal slN invariant of any 0-framed algebraically split link are Γ-invariant, where Γ=Y/2Y with the root lattice Y.

  • Referencias bibliográficas
    • 1. Beliakova, A., Blanchet, C., Lê, T.: Unified quantum invariants and their refinements for homology 3-spheres with 2-torsion. Fund. Math....
    • 2. Beliakova, A., Bühler, I., Lê, T.: A unified quantum SO(3) invariant for rational homology 3-spheres. Invent. Math. 185, 121–174 (2011)
    • 3. Beliakova, A., Chen, Q., Lê, T.: On the integrality of the Witten-Reshetikhin-Turaev 3-manifold invariants. Quantum Topol. 5(1), 99–141...
    • 4. Beliakova, A., Hikami, K.: Non-semisimple invariants and Habiro’s series. Topology & Geometry: Special Issue Dedicated to Vladimir...
    • 5. Beliakova, A., Lê, T.: Integrality of quantum 3-manifold invariants and a rational surgery formula. Compos. Math. 143(6), 1593–1612 (2007)
    • 6. Beliakova, A., Putyra, K., Wehrli, S.: Quantum link homology via trace functor I. Invent. Math. 215(2), 383–492 (2019)
    • 7. Carlsson, E., Nekrasov, N., Okounkov, A.: Five dimensional gauge theories and vertex operators. Mosc. Math. J. 14, 39–61 (2014)
    • 8. Chari, V., Pressley, A.: A Guide to Quantum Groups. Cambridge University Press, Cambridge (1995)
    • 9. Drinfeld, V.: Almost cocommutative Hopf algebras. Leningrad Math. J. 1(2), 321–342 (1990)
    • 10. Gorsky, E., Hogancamp, M.: Hilbert schemes and y-ification of Khovanov-Rozansky homology. Geom. Topol. 26, 587–678 (2022)
    • 11. Gorsky, E., Hogancamp, M., Wedrich, P.: Derived traces of Soergel categories. Int. Math. Res. Not. 2022(15), 11304–11400 (2022)
    • 12. Gorsky, E., Negut,, A., Rasmussen, J.: Flag Hilbert schemes, colored projectors and KhovanovRozansky homology. Adv. Math. 378, 107542...
    • 13. Gorsky, E., Wedrich, P.: Evaluations of annular Khovanov-Rozansky homology. Math. Z. 303, 57 (2023)
    • 14. Habiro, K.: A unified Witten-Reshetikhin-Turaev invariant for integral homology spheres. Invent. Math. 171(1), 1–81 (2008)
    • 15. Habiro, K.: Bottom tangles and universal invariants. Algebr. Geom. Topol. 6, 1113–1214 (2006)
    • 16. Habiro, K.: Cyclotomic completions of polynomial rings. Publ. Res. Inst. Math. Sci. 40(4), 1127–1146 (2004)
    • 17. Habiro, K.: An integral form of the quantized enveloping algebra of sl2 and its completions. J. Pure Appl. Algebra 211(1), 265–292 (2007)
    • 18. Habiro, K., Lê, T.: Unified quantum invariants for integral homology spheres associated with simple Lie algebras. Geom. Topol. 20(5),...
    • 19. Jantzen, J.C.: Lectures on Quantum Groups, Graduate Studies in Mathematics, vol. 6. American Mathematical Society, Providence, RI (1996)
    • 20. James, G., Kerber, Gordon, A.: The representation theory of the symmetric group. Encyclopedia of Mathematics and its Applications, vol...
    • 21. Kameyama, M., Nawata, S., Tao, R., Zhang, H.D.: Cyclotomic expansions of HOMFLY-PT colored by rectangular Young diagrams. Lett. Math....
    • 22. Knop, F.: Symmetric and non-Symmetric quantum Capelli polynomials. Comment. Math. Helv. 72, 84–100 (1997)
    • 23. Knop, F., Sahi, S.: Difference equations and symmetric polynomials defined by their zeros. Internat. Math. Res. Notices 10, 473–486 (1996)
    • 24. Lusztig, G.: Introduction to quantum groups. Progress in Mathematics, 110. Birkhäuser Boston, Inc., Boston (1993)
    • 25. Macdonald, I.G.: Schur functions: theme and variations. Séminaire Lotharingien de Combinatoire 28, Paper B28a, pp. 35 (1992)
    • 26. Macdonald, I.G.: Symmetric Functions and Hall Polynomials, 2nd edn. Oxford University Press, Oxford (1995)
    • 27. Molev, A.: Comultiplication rules for the double Schur functions and Cauchy identities. Electr. J. Comb. 16, 44 (2009)
    • 28. Okounkov, A.: Binomial formula for Macdonald polynomials and applications. Math. Res. Lett. 4(4), 533–553 (1997)
    • 29. Okounkov, A.: (Shifted) Macdonald polynomials: q-integral representation and combinatorial formula. Compos. Math. 112(2), 147–182 (1998)
    • 30. Okounkov, A.: On Newton interpolation of symmetric functions: a characterization of interpolation Macdonald polynomials. Adv. Appl. Math....
    • 31. Olshanski, G.: Interpolation Macdonald polynomials and Cauchy-type identities. J. Combin. Theory Ser. A 162, 65–117 (2019)
    • 32. Queffelec, H., Rose, D.: Sutured annular Khovanov-Rozansky homology. Trans. Am. Math. Soc. 370(2), 1285–1319 (2018)
    • 33. Robert, L.-H., Wagner, E.: Symmetric Khovanov-Rozansky link homologies. J. Ec. Polytech. Math. 7, 573–651 (2020)
    • 34. SageMath, the Sage Mathematics Software System. https://www.sagemath.org
    • 35. Sahi, S.: Interpolation, integrality, and a generalization of Macdonald’s polynomials. Intern. Math. Res. Not. 10, 457–471 (1996)
    • 36. Willetts, S.: A unification of the ADO and colored Jones polynomials of a knot. Quantum Topol. 13(1), 137–181 (2022)
    • 37. Zhang, R.B., Gould, M.D., Bracken, A.J.: Generalized Gelfand invariants of quantum groups. J. Phys. A 24(5), 937–943 (1991)

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno