Ir al contenido

Documat


The minimal model of Rota-Baxter operad with arbitrary weight

  • Kai Wang [1]
    1. [1] School of Mathematical Sciences, Key Laboratory of Mathematics and Engineering Applications (Ministry of Education),People’s Republic of China
  • Localización: Selecta Mathematica, New Series, ISSN 1022-1824, Vol. 30, Nº. 5, 2024
  • Idioma: inglés
  • DOI: 10.1007/s00029-024-00983-x
  • Enlaces
  • Resumen
    • This paper investigates Rota–Baxter algebras of of arbitrary weight, that is, associative algebras endowed with Rota-Baxter operators of arbitrary weight, from an operadic viewpoint. Denote by λRBA the operad of Rota-Baxter associative algebras of weight λ. A homotopy cooperad is explicitly constructed, which can be seen as the Koszul dual of λRBA as it is proven that the cobar construction of this homotopy cooperad is exactly the minimal model of λRBA. This enables us to introduce the notion of homotopy Rota-Baxter algebras. The deformation complex of a Rota-Baxter algebra and the underlying L∞-algebra structure over it are exhibited as well.

  • Referencias bibliográficas
    • 1. Aguiar, Marcelo: Infinitesimal HOPF algebras. In: Andruskiewitsch, Nicolás, Ferrer Santos, Walter Ricardo, Schneider, Hans-Jürgen. (eds.)...
    • 2. Aguiar, M.: On the associative analog of Lie bialgebras. J. Algebra 244, 492–532 (2001)
    • 3. Bai, C.: A unified algebraic approach to classical Yang–Baxter equation. J. Phys. A Math. Theor. 40, 11073–11082 (2007)
    • 4. Baxter, G.: An analytic problem whose solution follows from a simple algebraic identity. Pacific J. Math. 10, 731–742 (1960)
    • 5. Bai, C., Bellier, O., Guo, L., Ni, X.: Spliting of operations, Manin products and Rota-Baxter operators. Int. Math. Res. Not. 3, 485–524...
    • 6. Bremner, Murray R., Dotsenko, Vladimir: Algebraic Operads: An Algorithmic Companion. Chapman and Hall/CRC, London (2016). https://doi.org/10.1201/b20061
    • 7. Cartier, P.: On the structure of free Baxter algebras. Adv. Math. 9, 253–265 (1972)
    • 8. Chen, Jun, Guo, Li., Wang, Kai, Zhou, Guodong: Koszul duality, minimal model and L∞ structure for differential algebras with weight. Adv....
    • 9. Chen, J., Qi, Z., Wang, K., Zhou, G.: (De)colouring in operad theory with applications to homotopy theory of operated algebras, preprint...
    • 10. Connes, Alain, Kreimer, Dirk: Renormalization in quantum field theory and the Riemann-Hhilbert problem I: The HOPF algebra structure of...
    • 11. Das, A.: Deformations of associative Rota-Baxter operators. J. Algebra 560, 144–180 (2020)
    • 12. Das, A.: Cohomology and deformations of weighted Rota-Baxter operators. J. Math. Phys. (2022). https://doi.org/10.1063/5.0093066
    • 13. Das, A., Mishra, S.K.: The L∞ deformations of associative Rota-Baxter algebras and homotopy RotaBaxter operators. J. Math. Phys. (2022)....
    • 14. Dotsenko, V., Khoroshkin, A.: Gröbner bases for operads. Duke Math. J. 153(2), 363–396 (2010)
    • 15. Dotsenko, V., Khoroshkin, A.: Quillen homology for operads via Gröbner bases. Doc. Math. 18, 707– 747 (2013)
    • 16. Dotsenko, V., Poncin, N.: A tale of three homotopies. Appl. Categ. Struct. 24(6), 845–873 (2016)
    • 17. Drummond-Cole, G., Vallette, B.: The minimal model for the Batalin–Vilkovisky operad. Selecta Math. 19(1), 1–47 (2013)
    • 18. Ebrahimi-Fard, K.: Loday-type algebras and the Rota–Baxter relation. Lett. Math. Phys. 61(2), 139– 147 (2002)
    • 19. Frégier, Y., Markl, M., Yau, D.: The L∞-deformation complex of diagrams of algebras. New York J. Math. 15, 353–392 (2009)
    • 20. Gálvez-Carrillo, I., Tonks, A., Vallette, B.: Homotopy Batalin-Vilkovisky algebras. J. Noncommut. Geom. 6(3), 539–602 (2012)
    • 21. Gerstenhaber, M.: The cohomology structure of an associative ring. Ann. Math. 78, 267–288 (1963)
    • 22. Gerstenhaber, M., Voronov, A.: Homotopy G-algebras and moduli space operad. Int. Math. Res. Notices 1995(3), 141 (1995). https://doi.org/10.1155/S1073792895000110
    • 23. Getzler, E.: Cartan homotopy formulas and the Gauss–Manin connection in cyclic homology. Israel Math. Conf. Proc. 7, 65–78 (1993)
    • 24. Getzler, E.: Lie theory for nilpotent L∞-algebras. Ann. Math. 2(170), 271–301 (2009)
    • 25. Getzler, E., Jones, D. S. J.: Operads, homotopy algebra and iterated integrals for double loop spaces, hep-th/9403055 (1994)
    • 26. Ginzburg, V., Kapranov, M.: Koszul duality for operads, Duke Math. J. 76 (1994), no. 1, 203-272. Erratum to: “Koszul duality for operads”...
    • 27. Guo, L.: Operated semigroups, Motzkin paths and rooted trees. J. Alg. Comb. 29, 35–62 (2009)
    • 28. Guo, L.: What is a Rota–Baxter algebra? Notices Amer. Math. Soc. 56(11), 1436–1437 (2009)
    • 29. Guo, L.: An Introduction to Rota-Baxter Algebra, International Press (US) and Higher Education Press (China), (2012)
    • 30. Guo, L., Keigher, W.: Baxter algebras and shuffle products. Adv. Math. 150, 117–149 (2000)
    • 31. Guo, L., Keigher, W.: On free Baxter algebras: completions and the internal construction. Adv. Math. 151, 101–127 (2000)
    • 32. Guo, Li., Lang, Honglei, Sheng, Yunhe: Integration and geometrization of Rota–Baxter Lie algebras. Adv. Math. 387, 107834 (2021). https://doi.org/10.1016/j.aim.2021.107834
    • 33. Guo, L., Li, Y., Sheng, Y., Zhou, G.: Cohomologies, extensions and deformations of differential algebras with arbitrary weight. Theory...
    • 34. Guo, L., Zhang, B.: Renormalization of multiple zeta values. J. Algebra 319, 3770–3809 (2008)
    • 35. Hoffman, M.E.: Quasi-shuffle products. J. Algebraic Combin. 11(1), 49–68 (2000)
    • 36. Jiang, J., Sheng, Y.: Representations and cohomologies of relative Rota-Baxter Lie algebras and applications. J. Algebra 602, 637–670...
    • 37. Jiang, J., Sheng, Y., Zhu, C.: Cohomologies of relative Rota-Baxter operators on Lie groups and Lie algebras, arXiv:2108.02627
    • 38. Kontsevich, M., Soibelman, Y.: Deformations of algebras over operads and the Deligne conjecture, Conference Moshe Flato 1999, Vol. I (Dijon),...
    • 39. Kosmann-Schwarzbach, Y.: Derived brackets. Lett. Math. Phys. 69, 61–87 (2004)
    • 40. Lada, T., Stasheff, J.: Introduction to SH Lie algebras for physicists. Int. J. Theoret. Phys. 32, 1087– 1103 (1993)
    • 41. Lada, T., Markl, M.: Strongly Homotopy Lie algebras. Comm. Algebra 23, 2147–2161 (1995)
    • 42. Lazarev, A., Sheng, Y., Tang, R.: Deformations and Homotopy theory of relative Rota–Baxter lie algebras. Comm. Math. Phys. 383(1), 595–631...
    • 43. Lazarev, A., Sheng, Y., Tang, R.: Homotopy relative Rota-Baxter Lie algebras, triangular L∞- bialgebras and higher derived brackets. Trans....
    • 44. Loday, Jean-Louis., Chapoton, Frédéric., Frabetti, Alessandra, Goichot, François: Dialgebras and Related Operads. Springer Berlin Heidelberg,...
    • 45. Loday, J.-L.: On the operad of associative algebras with derivation. Georgian Math. J. 17, 347–372 (2010)
    • 46. Loday, Jean-Louis., Vallette, Bruno: Algebraic Operads. Springer Berlin Heidelberg, Berlin, Heidelberg (2012)
    • 47. Lurie, J.: Formal moduli problems, avalible at https://www.math.ias.edu/~lurie/
    • 48. Markl, M.: Cotangent cohomology of a category and deformations. J. Pure Appl. Algebra 113(2), 195–218 (1996)
    • 49. Markl, M.: Operads and PROPs, Handbook of algebra. Vol. 5, 87-140, Handb. Algebr., 5, Elsevier/North-Holland, Amsterdam, (2008)
    • 50. Markl, M.: Intrinsic brackets and the L∞-deformation theory of bialgebras. J. Homotopy Relat. Struct. 5(1), 177–212 (2010)
    • 51. Markl, M., Shnider, S., Stasheff, J.: Operads in algebra, topology and physics. Mathematical Surveys and Monographs, 96. American Mathematical...
    • 52. Merkulov, S., Vallette, B.: Deformation theory of representations of prop(erad)s. I, J. Reine Angew. Math. 634, 51–106 (2009)
    • 53. Merkulov, S., Vallette, B.: Deformation theory of representations of prop(erad)s. II, J. Reine Angew. Math. 636, 123–174 (2009)
    • 54. Pei, Y., Sheng, Y., Tang, R., Zhao, K.: Actions of monoidal categories and representations of Cartan type Lie algebras. J. Inst. Math....
    • 55. Pridham, J.P.: Unifying derived deformation theories. Adv. Math. 224(3), 772–826 (2010)
    • 56. Rota, G.C.: Baxter algebras and combinatorial identities I, II. Bull. Amer. Math. Soc. 75(325–329), 330–334 (1969)
    • 57. Rota, G.-C.: Baxter operators, an introduction. In: Joseph P. S. K., ed., Gian-Carlo Rota on Combinatorics, Introductory Papers and Commentaries...
    • 58. Semenov-Tian-Shansky, M.A.: What is a classical r-matrix? Funct. Ana. Appl. 17, 254 (1983)
    • 59. Stasheff, J.: Homotopy associativity of H-spaces I. Trans. Amer. Math. Soc. 108, 275–292 (1963)
    • 60. Stasheff, J.: Differential graded Lie algebras, quasi-Hopf algebras and higher homotopy algebras, Quantum groups (Leningrad, 1990), pp....
    • 61. Tang, R., Bai, C., Guo, L., Sheng, Y.: Deformations and their controlling cohomologies of O-operators. Comm. Math. Phys. 368(2), 665–700...
    • 62. Van der Laan, P.: Operads up to Homotopy and Deformations of Operad Maps, arXiv:math/0208041 [math.QA]
    • 63. Van der Laan, P.: Coloured Koszul duality and strongly homotopy operads, arXiv:math/0312147 [math.QA]
    • 64. Voronov, T.: Higher derived brackets and homotopy algebras. J. Pure Appl. Algebra 202, 133–153 (2005)
    • 65. Voronov, T.: Higher derived brackets for arbitrary derivations, Travaux mathématiques. Fasc. XVI, 163–186, Trav. Math., 16, Univ. Luxemb.,...
    • 66. Vitagliano, L.: Representations of homotopy Lie-Rinehart algebras. Math. Proc. Cambridge Philos. Soc. 158(1), 155–191 (2015)
    • 67. Wang, K., Zhou, G.: Deformations and homotopy theory of Rota-Baxter algebras of any weight, arXiv:2108.06744v2

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno