Ir al contenido

Documat


The distinguished invertible object as ribbon dualizing object in the Drinfeld center

  • Lukas Müller [1] ; Lukas Woike [2]
    1. [1] Perimeter Institute

      Perimeter Institute

      Canadá

    2. [2] Institut de Mathèmatiques de Bourgogne,Universitè de Bourgogne, Dijon, France
  • Localización: Selecta Mathematica, New Series, ISSN 1022-1824, Vol. 30, Nº. 5, 2024
  • Idioma: inglés
  • DOI: 10.1007/s00029-024-00975-x
  • Enlaces
  • Resumen
    • We prove that the Drinfeld center Z(C) of a pivotal finite tensor category C comes with the structure of a ribbon Grothendieck–Verdier category in the sense of Boyarchenko–Drinfeld. Phrased operadically, this makes Z(C) into a cyclic algebra over the framed E2-operad. The underlying object of the dualizing object is the distinguished invertible object of C appearing in the well-known Radford isomorphism of Etingof–Nikshych–Ostrik. Up to equivalence, this is the unique ribbon Grothendieck–Verdier structure on Z(C) extending the canonical balanced braided structure that Z(C) already comes equipped with. The duality functor of this ribbon Grothendieck–Verdier structure coincides with the rigid duality if and only if C is spherical in the sense of Douglas–Schommer-Pries–Snyder. The main topological consequence of our algebraic result is that Z(C) gives rise to an ansular functor, in fact even a modular functor regardless of whether C is spherical or not. In order to prove the aforementioned uniqueness statement for the ribbon Grothendieck–Verdier structure, we derive a seven-term exact sequence characterizing the space of ribbon Grothendieck–Verdier structures on a balanced braided category. This sequence features the Picard group of the balanced version of the Müger center of the balanced braided category.

  • Referencias bibliográficas
    • 1. Boyarchenko, M., Drinfeld, V.: A duality formalism in the spirit of Grothendieck and Verdier. Quantum Top. 4(4), 447–489 (2013)
    • 2. Brochier, A., Woike, L.: A classification of modular functors via factorization homology. arXiv:2212.11259 [math.QA] (2022)
    • 3. Douglas, C.L., Schommer-Pries, C., Snyder, N.: Dualizable Tensor Categories. Mem. Amer. Math. Soc. (2020)
    • 4. Etingof, P., Gelaki, S., Nikshych, D., Ostrik, V.: Tensor categories, volume 205 of Math. Surveys Monogr. Am. Math. Soc. (2015)
    • 5. Etingof, P., Nikshych, D., Ostrik, V.: An analogue of Radford’s S4 formula for finite tensor categories. Int. Math. Res. Not. 54, 2915–2933...
    • 6. Etingof, P., Ostrik, V.: Finite tensor categories. Mosc. Math. J. 4(3), 627–654 (2004)
    • 7. Fuchs, J., Schaumann, G., Schweigert, C.: Eilenberg-Watts calculus for finite categories and a bimodule Radford S4 theorem. Trans. Am....
    • 8. Getzler, E., Kapranov, M.: Cyclic operads and cyclic homology. In R. Bott and S.-T. Yau, (eds) Conference proceedings and lecture notes...
    • 9. Joyal, A., Street, R.: Braided tensor categories. Adv. Math. 102(1), 20–78 (1993)
    • 10. Kassel, C.: Quantum Groups, volume 155 of Graduate Texts in Math. Springer (2015)
    • 11. Kerler, T., Lyubashenko, V.V.: Non-Semisimple Topological Quantum Field Theories for 3-Manifolds with Corners, volume 1765 of Lecture...
    • 12. Lyubashenko, V.V.: Invariants of 3-manifolds and projective representations of mapping class groups via quantum groups at roots of unity....
    • 13. Müger, M.: From subfactors to categories and topology II. The quantum double of tensor categories and subfactors. J. Pure Appl. Algebra...
    • 14. Müger, M.: Tensor categories: a selective guided tour. Rev. Un. Mat. Argentina 51, 95–163 (2010)
    • 15. Müller, L., Woike, L.: Classification of Consistent Systems of Handlebody Group Representations. Int. Math. Res. Not. rnad178 (2023)
    • 16. Müller, L.,Woike, L.: Cyclic framed little disks algebras, Grothendieck–Verdier duality and handlebody group representations. Quart. J....
    • 17. Runkel, I.: String-net models for non-spherical pivotal fusion categories. J. Knot Theory Ramif. 29(6), 2050035 (2020)
    • 18. Shimizu, K.: Non-degeneracy conditions for braided finite tensor categories. Adv. Math. 355, 106778 (2019)
    • 19. Shimizu, K.: Ribbon structures of the Drinfeld center of a finite tensor category. Kodai Math. J. 46(1), 75–114 (2023)
    • 20. Shibata, T., Shimizu, K.: Modified Traces and the Nakayama Functor. Alg. Rep, Theory (2021)
    • 21. Salvatore, P., Wahl, N.: Framed discs operads and Batalin–Vilkovisky algebras. Quart. J. Math. 54, 213–231 (2003)
    • 22. Turaev, V., Virelizier, A.: Monoidal categories and topological field theory. Progress in Mathematics 322, Birkhäuser (2017)
    • 23. Wahl, N.: Ribbon braids and related operads. Ph.d. thesis, Oxford (2001)

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno