Ir al contenido

Documat


Row-column mirror symmetry for colored torus knot homology

  • Luke Conners [1]
    1. [1] Department of Mathematics, University of North Carolina. USA
  • Localización: Selecta Mathematica, New Series, ISSN 1022-1824, Vol. 30, Nº. 5, 2024
  • Idioma: inglés
  • DOI: 10.1007/s00029-024-00984-w
  • Enlaces
  • Resumen
    • We give a recursive construction of the categorified Young symmetrizer introduced by Abel and Hogancamp (Sel Math (NS) 23:1739–1801, 2017) corresponding to the single-column partition. As a consequence, we obtain new expressions for the uncolored y-ified HOMFLYPT homology of positive torus links and the y-ified column-colored HOMFLYPT homology of positive torus knots. In the latter case, we compare with the row-colored homology of positive torus knots computed by Hogancamp and Mellit (Torus link homology, 2019), verifying the mirror symmetry conjectures of Gukov and Stošić (Geom Topol Monogr 18:309–367, 2012) and Gorsky et al. (Fund Math 243:209–299, 2018) in this case.

  • Referencias bibliográficas
    • 1. Abel, M., Hogancamp, M.: Categorified Young symmetrizers and stable homology of torus links II. Sel. Math. (N.S.) 23(3), 1739–1801 (2017)....
    • 2. Alexander, J.W.: A lemma on systems of knotted curves. Proc. Natl. Acad. Sci. U. S. A. 9, 93–95 (1923)
    • 3. Abel, M., Willis, M.: Colored Khovanov-Rozansky homology for infinite braids. Algebr. Geom. Topol. 19, 2401–2438 (2019). arxiv:1709.06666
    • 4. Bar-Natan, D.: Fast Khovanov homology computations. J. Knot Theory Ramif. 16(3), 243–255 (2007)
    • 5. Cautis, S.: Clasp technology to knot homology via the affine Grassmannian. Math. Ann. 363, 1053– 1115 (2015). arxiv:1207.2074
    • 6. Cautis, S.: Remarks on coloured triply graded link invariants. Algebr. Geom. Topol. 17(6), 3811–3836 (2017). arxiv:1611.09924
    • 7. Cooper, B., Krushkal, V.: Categorification of the Jones-Wenzl projectors. Quantum Topol. 3(2), 139– 180 (2012). arxiv:1005.5117
    • 8. Cautis, S., Kamnitzer, J., Morrison, S.: Webs and quantum skew Howe duality. Math. Ann. 360(1–2), 351–390 (2014). arxiv:1210.6437
    • 9. Dunfield, N., Gukov, S., Rasmussen, J.: The superpolynomial for knot homologies. Exp. Math. 15(2), 129–159 (2006). arxiv:math/0505662
    • 10. Elias, B., Hogancamp, M.: Categorical diagonalization. arxiv:1707.04349, (2017)
    • 11. Elias, B., Hogancamp, M.: Categorical diagonalization of full twists. arXiv:1801.00191, (2017)
    • 12. Elias, B., Hogancamp, M.: On the computation of torus link homology. Compos. Math., (2019). arxiv:1603.00407
    • 13. Elbehiry, M.: Minimal categorical idempotents in the Soergel category of finite Coxeter groups (2022). Thesis (Ph.D.) Northeastern University
    • 14. Elias, B., Makisumi, S., Thiel, U., Williamson, G.: Introduction to Soergel bimodules. RSME Springer Series, Springer Cham, Cham, Switzerland...
    • 15. Elias, B., Snyder, N., Williamson, G.: On cubes of Frobenius extensions. arxiv:1308.5994, (2014)
    • 16. Elias, B., Williamson, G.: The Hodge theory of Soergel bimodules. Ann. Math. 180, 1089–1136 (2014). arxiv:1212.0791
    • 17. Gorsky, E., Gukov, S., Stoši´c, M.: Quadruply-graded colored homology of knots. Fund. Math. 243, 209–299 (2018). arxiv:1304.3481
    • 18. Gorsky, E., Hogancamp, M.: Hilbert schemes and y-ification of Khovanov-Rozansky homology. Geom. Topol. 26, 587–678 (2022). arxiv:1712.03938
    • 19. Gorsky, E., Hogancamp, M., Mellit, A.: Tautological classes and symmetry in Khovanov-Rozansky homology. arXiv:2103.01212, (2021)
    • 20. Gukov, S., Stoši´c, M.: Homological algebra of knots and BPS states. Geom. Topol. Monogr. 18, 309– 367 (2012). arxiv:1112.0030
    • 21. Hogancamp, M., Mellit, A.: Torus link homology. arxiv:1909.00418, (2019)
    • 22. Hogancamp, M.: Idempotents in triangulated monoidal categories. arxiv:1703.01001, (2017)
    • 23. Hogancamp, M.: Categorified Young symmetrizers and stable homology of torus links. Geom. Topol. 22, 2943–3002 (2018). arxiv:1505.08148
    • 24. Hogancamp, M.: Homological perturbation theory with curvature. arxiv:1912.03843v2, (2020)
    • 25. Hogancamp, M., Rose, D. E. V., Wedrich, P.: Link splitting deformation of colored Khovanov– Rozansky homology. arXiv:2107.09590, (2021)
    • 26. Hogancamp, M., Rose, D. E. V., Wedrich, P.: A skein relation for singular Soergel bimodules. arXiv:2107.08117, (2021)
    • 27. Jones, V.F.R.: Hecke algebra representations of braid groups and link polynomials. Ann. Math. 126, 335–388 (1987)
    • 28. Khovanov, M.: Triply-graded link homology and Hochschild homology of Soergel bimodules. Int. J. Math. 18(8), 869–885 (2007). arxiv:math/0510265
    • 29. Khovanov, M., Rozansky, L.: Matrix factorizations and link homology. II. Geom. Topol. 12(3), 1387– 1425 (2008). arxiv:math/0401268
    • 30. Liu, K., Peng, P.: Proof of the Labastida-Mariño-Ooguri-Vafa conjecture. arxiv:0704.1526, (2009)
    • 31. Liu, K., Peng, P.: New structures of knot invariants. Commun. Number Theory 5(3), 601–615 (2011)
    • 32. Mellit, A.: Homology of torus knots. Geom. Topol. 26, 47–70 (2022). arxiv:1704.07630
    • 33. Mackaay, M., Stoši´c, M., Vaz, P.: The 1,2-coloured HOMFLY-PT link homology. Trans. Am. Math. Soc. 363(4), 2091–2124 (2011). arxiv:0809.0193
    • 34. Oblomkov, A., Rozansky, L.: HOMFLYPT homology of Coxeter links. arxiv:1706.00124, (2017)
    • 35. Oblomkov, A., Rozansky, L.: Knot homology and sheaves on the Hilbert scheme of points in the plane. Sel. Math. 24, 2351–2454 (2018). arxiv:1608.03227
    • 36. Oblomkov, A., Rozansky, L.: Affine braid group, JM elements and knot homology. Transform. Groups 24, 531–544 (2019). arxiv:1702.03569
    • 37. Oblomkov, A., Rozansky, L.: Dualizable link homology. arxiv:1905.06511, (2019)
    • 38. Oblomkov, A., Rozansky, L.: Soergel bimiodules and matrix factorizations. arxiv:2010.14546, (2020)
    • 39. Rasmussen, J.: Some differentials on Khovanov-Rozansky homology. Geom. Topol. 19(6), 3031–3104 (2015). arXiv:0607544
    • 40. Rose, D.: A categorification of quantum sl3 projectors and the sl3 Reshetikhin-Turaev invariant of tangles. Quantum Topol. 5(1), 1–59...
    • 41. Rouquier, R.: Categorification of the braid groups. arXiv:math/0409593, (2004)
    • 42. Rozansky, L.: An infinite torus braid yields a categorified Jones-Wenzl projector. arxiv:1005.3266, (2010)
    • 43. Reshtikhin, N.Y., Turaev, V.. G..: Ribbon graphs and their invariants derived from quantum groups. Commun. Math. Phys. 1, 1–26 (1990)
    • 44. Rose, D., Tubbenhauer, D.: Homflypt homology for links in handlebodies via type A Soergel bimodules. Quantum Topol. 2, 373–410 (2021)....
    • 45. Stroppel, C., Sussan, J.: Categorified Jones-Wenzl projectors: a comparison. arxiv:1105.3038, (2011)
    • 46. Wedrich, P.: Exponential growth of colored HOMFLY-PT homology. Adv. Math., (2019). arxiv:1602.02769
    • 47. Willis, M.: Khovanov-Rozansky homology for infinite multicolored braids. Cand. J. Math. 73, 1239– 1277 (2021). arxiv:1904.09055
    • 48. Webster, B., Williamson, G.: A geometric construction of colored HOMFLYPT homology. Geom. Topol. 21, 2557–2600 (2017). arxiv:0905.0486

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno