Ir al contenido

Documat


A sharp bound for hypergeometric rank in dimension three

  • Christine Berkesch [1] ; María-Cruz Fernández-Fernández [2]
    1. [1] University of Minnesota

      University of Minnesota

      City of Minneapolis, Estados Unidos

    2. [2] Universidad de Sevilla

      Universidad de Sevilla

      Sevilla, España

  • Localización: Selecta Mathematica, New Series, ISSN 1022-1824, Vol. 30, Nº. 5, 2024
  • Idioma: inglés
  • DOI: 10.1007/s00029-024-00987-7
  • Enlaces
  • Resumen
    • We provide a sharp upper bound on the quotient of the rank of an A-hypergeometric system with a three-dimensional torus action by the normalized volume of A; in this case, the upper bound is two.

  • Referencias bibliográficas
    • 1. Adolphson, Alan: Hypergeometric functions and rings generated by monomials. Duke Math. J. 73, 269–290 (1994)
    • 2. Batyrev, Victor, Nill, Benjamin: Multiples of lattice polytopes without interior lattice points. Mosc. Math. J. 7(2), 195–207 (2007)
    • 3. Batyrev, Victor, Juny, Dorothee: Classification of Gorenstein toric del Pezzo varieties in arbitrary dimension. Mosc. Math. J. 10(478),...
    • 4. Berkesch, Christine: The rank of a hypergeometric system. Compos. Math. 147(1), 284–318 (2011)
    • 5. Berkesch, Christine, Forgård, Jens, Matusevich, Laura Felicia: On the parametric behavior of Ahypergeometric functions. Trans. Amer. Math....
    • 6. Berkesch, Christine, Fernández-Fernández, María-Cruz.: On the rank of an A-hypergeometric Dmodule versus the normalized volume of A. Bull....
    • 7. Cattani, Eduardo, D’Andrea, Carlos, Dickenstein, Alicia: The A-hypergeometric system associated with a monomial curve. Duke Math. J. 99(2),...
    • 8. Ehrhart, Eugène: Sur les polyèdres rationnels homothétiques à n dimensions. C. R. Acad. Sci. Paris 254, 616–618 (1962)
    • 9. Fernández, María Cruz Fernández.: Exponential growth of rank jumps for A-hypergeometric systems. Rev. Mat. Iberoam. 29(4), 1397–1404 (2013)
    • 10. Gel’fand, I.M., Graev, M.I., Zelevinski˘ı, A.V.: Holonomic systems of equations and series of hypergeometric type. Dokl. Akad. Nauk SSSR...
    • 11. Gel’fand, I.M., Zelevinski˘ı, A.V., Kapranov, M.M.: Hypergeometric functions and toric varieties Funktsional. Anal. i Prilozhen. 23(2),...
    • 12. Gel’fand, I.M., Zelevinski˘ı, A.V., Kapranov, M.M.: Hypergeometric functions and toric varieties. Funktsional. Correct. ibid 27(4), 91...
    • 13. Laura Felicia Matusevich: Ezra Miller, and Uli Walther, Homological methods for hypergeometric families. J. Amer. Math. Soc. 18(4), 919–941...
    • 14. Okuyama,Go: A-hypergeometric ranks for toric threefolds, Int. Math. Res. Not. 2006, Article ID 70814, 38
    • 15. Saito, Mutsumi, Sturmfels, Bernd, Takayama, Nobuki: Gröbner deformations of hypergeometric differential equations. Springer-Verlag, Berlin...
    • 16. Schulze, Mathias, Walther, Uli: Resonance equals reducibility for A-hypergeometric systems. Algebra Number Theory 6(3), 527–537 (2012)

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno