Ir al contenido

Documat


Symplectic topology and ideal-valued measures

  • Adi Dickstein [1] ; Leonid Polterovich [1] ; Yaniv Ganor [2] ; Frol Zapolsky [3]
    1. [1] Tel Aviv University

      Tel Aviv University

      Israel

    2. [2] Holon Institute of Technology

      Holon Institute of Technology

      Israel

    3. [3] MI SANU, Kneza Mihaila 36, Belgrade, Serbia
  • Localización: Selecta Mathematica, New Series, ISSN 1022-1824, Vol. 30, Nº. 5, 2024
  • Idioma: inglés
  • DOI: 10.1007/s00029-024-00967-x
  • Enlaces
  • Resumen
    • We adapt Gromov’s notion of ideal-valued measures to symplectic topology, and use it for proving new results on symplectic rigidity and symplectic intersections. Furthermore, it allows us to discuss three “big fiber theorems”—the Centerpoint Theorem in combinatorial geometry, the Maximal Fiber Inequality in topology, and the Non-displaceable Fiber Theorem in symplectic topology—from a unified viewpoint. Our main technical tool is an enhancement of the symplectic cohomology theory recently developed by Varolgüneş.

  • Referencias bibliográficas
    • Biran, P., Cornea, O.: Quantum structures for Lagrangian submanifolds (2007). arXiv preprint arXiv:0708.4221
    • Borman, M.S., Sheridan, N., Varolgunes, U.: Quantum cohomology as a deformation of symplectic cohomology. Journal of Fixed Point Theory and...
    • Bott, R., Tu, L.W., et al.: Differential forms in algebraic topology, vol. 82. Springer (1982)
    • Cieliebak, K., Oancea, A.: Symplectic homology and the Eilenberg-Steenrod axioms. Algebraic & Geometric Topology 18(4), 1953–2130 (2018)
    • Davis, J.F., Kirk, P.: Lecture notes in algebraic topology, vol. 35. American Mathematical Soc. (2001)
    • Edelsbrunner, H.: Algorithms in combinatorial geometry, vol. 10. Springer Science & Business Media (2012)
    • Entov, M., Polterovich, L.: Quasi-states and symplectic intersections. Commentarii Mathematici Helvetici 81(1), 75–99 (2006)
    • Entov, M., Polterovich, L.: Rigid subsets of symplectic manifolds. Compositio Mathematica 145(3), 773–826 (2009)
    • Ganor, Y., Tanny, S.: Floer theory of disjointly supported Hamiltonians on symplectically aspherical manifolds. Algebraic & Geometric...
    • Greenlees, J.P., May, J.P.: Derived functors of I-adic completion and local homology. Journal of Algebra 149(2), 438–453 (1992)
    • Groman, Y.: Floer theory and reduced cohomology on open manifolds. Geometry & Topology 27(4), 1273–1390 (2023)
    • Gromov, M.: Singularities, expanders and topology of maps. Part 1: Homology versus volume in the spaces of cycles. Geometric and Functional...
    • Gromov, M.: Singularities, expanders and topology of maps. Part 2: From combinatorics to topology via algebraic isoperimetry. Geometric and...
    • Karasev, R.N.: Covering dimension using toric varieties. Topology and its Applications 177, 59–65 (2014)
    • Kawasaki, M.: Function theoretical applications of Lagrangian spectral invariants (2018). arXiv preprint arXiv:1811.00527
    • Leclercq, R., Zapolsky, F.: Spectral invariants for monotone Lagrangians. Journal of Topology and Analysis 10(03), 627–700 (2018)
    • Mak, C.Y., Sun, Y., Varolgunes, U.: A characterization of heaviness in terms of relative symplectic cohomology. Journal of Topology 17(1),...
    • McDuff, D., Salamon, D.: J-holomorphic curves and symplectic topology, vol. 52. American Mathematical Soc. (2012)
    • Oancea, A.: A survey of Floer homology for manifolds with contact type boundary or symplectic homology. Ensaios Mathemáticos 7, 1–41 (2004)
    • Palais, R.S.: Homotopy theory of infinite dimensional manifolds. Topology 5(1), 1–16 (1966)
    • Pardon, J.: An algebraic approach to virtual fundamental cycles on moduli spaces of pseudoholomorphic curves. Geometry & Topology 20(2),...
    • Pardon, J.: Contact homology and virtual fundamental cycles. Journal of the American Mathematical Society 32(3), 825–919 (2019)
    • Piunikhin, S., Salamon, D., Schwarz, M.: Symplectic Floer-Donaldson theory and quantum cohomology. In Contact and symplectic geometry, pages...
    • Polterovich, L., Rosen, D., Samvelyan, K., Zhang, J.: Topological persistence in geometry and analysis, vol. 74. American Mathematical Soc....
    • Rado, R.: A theorem on general measure. Journal of the London Mathematical Society 1(4), 291–300 (1946)
    • Sun, Y.: Index bounded relative symplectic cohomology (2021). arXiv preprint arXiv:2109.06146
    • Tonkonog, D., Varolgunes, U.: Super-rigidity of certain skeleta using relative symplectic cohomology. Journal of Topology and Analysis 15(01),...
    • Varolgunes, U.: Mayer-Vietoris property for relative symplectic cohomology. Massachusetts Institute of Technology (2018)
    • Varolgunes, U.: Mayer-Vietoris property for relative symplectic cohomology. Geometry & Topology 25(2), 547–642 (2021)
    • Viterbo, C.: Functors and computations in Floer homology with applications. I. Geometric & Functional Analysis 9, 985–1033 (1999)

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno