Ir al contenido

Documat


Paracanonical base locus, Albanese morphism, and semi-orthogonal indecomposability of derived categories

  • Federico Caucci [1]
    1. [1] University of Milan

      University of Milan

      Milán, Italia

  • Localización: Selecta Mathematica, New Series, ISSN 1022-1824, Vol. 30, Nº. 5, 2024
  • Idioma: inglés
  • DOI: 10.1007/s00029-024-00981-z
  • Enlaces
  • Resumen
    • Motivated by an indecomposability criterion of Xun Lin for the bounded derived category of coherent sheaves on a smooth projective variety X, we study the paracanonical base locus of X, that is the intersection of the base loci of ωX⊗Pα for all α∈Pic0X. We prove that this is equal to the relative base locus of ωX with respect to the Albanese morphism of X. As an application, we get that bounded derived categories of Hilbert schemes of points on certain surfaces do not admit non-trivial semi-orthogonal decompositions. We also have a consequence on the indecomposability of bounded derived categories in families. Finally, our viewpoint allows to unify and extend some results recently appearing in the literature.

  • Referencias bibliográficas
    • Barja, M.A., Lahoz, M., Naranjo, J.C., Pareschi, G.: On the bicanonical map of irregular varieties. J. Algebr. Geom. 21(3), 445–471 (2012)
    • Bastianelli, F., Belmans, P., Okawa, S., Ricolfi, A.T.: Indecomposability of derived categories in families, preprint arXiv:2007.00994v1 (2020)
    • Belmans, P., Galkin, S., Mukhopadhyay, S.: Semiorthogonal decompositions for moduli of sheaves on curves, Oberwolfach Reports 24/2018, Oberwolfach...
    • Belmans, P., Krug, A.: Derived categories of (nested) Hilbert schemes. Michigan Math. J. 74(1), 167–187 (2024)
    • Biswas, I., Gómez, T., Lee, K.-S.: Semi-orthogonal decomposition of symmetric products of curves and canonical system. Rev. Mat. Iberoam....
    • Bridgeland, T.: Equivalences of triangulated categories and Fourier-Mukai transforms. Bull. Lond. Math. Soc. 31(1), 25–34 (1999)
    • Bondal, A., Orlov, D.: Semiorthogonal decomposition for algebraic varieties arXiv:alg-geom/9506012 (1995)
    • Campana, F.: Réduction d’Albanèse d’un morphisme propre et faiblement kählérien. I. Compos. Math. 54(3), 373–398 (1985)
    • Caucci, F., Pareschi, G.: Derived invariants arising from the Albanese map. Algebr. Geom. 6(6), 730– 746 (2019)
    • Caucci, F., Lombardi, L., Pareschi, G.: Derived invariance of the Albanese relative canonical ring. Adv. Math. 419, 47 (2023)
    • Chen, J.A., Jiang, Z.: Positivity in varieties of maximal Albanese dimension. J. Reine Angew. Math. 736, 225–253 (2018)
    • Esnault, H., Viehweg, E.: Lectures on vanishing theorems, DMV Seminar, 20. Birkhäuser Verlag, Basel (1992)
    • Fogarty, J.: Algebraic families on an algebraic surface. Am. J. Math. 90, 511–521 (1968)
    • Fogarty, J.: Algebraic families on an algebraic surface, II, The Picard scheme of the punctual Hilbert scheme. Am. J. Math. 95, 660–687 (1973)
    • Fujiki, A.: Relative algebraic reduction and relative Albanese map for a fiber space in “C”. Publ. Res. Inst. Math. Sci. 19(1), 207–236 (1983)
    • Grothendieck, A.: Fondements de la geometric algebrique (Extraits du Seminaire Bourbaki 1957– 1962), Paris (1962)
    • Hacon, Ch.: A derived category approach to generic vanishing. J. Reine Angew. Math. 575, 173–187 (2004)
    • Huibregtse, M.E.: The Albanese mapping for a punctual Hilbert scheme: I. Irreducibility of the fibers. Trans. Am. Math. Soc. 251, 267–285...
    • Huibregtse, M.E.: The Albanese mapping for a punctual Hilbert scheme: II. Symmetrized differentials and singularities. Trans. Amer. Math....
    • Huybrechts, D.: Fourier-Mukai transforms in algebraic geometry. Clarendon Press, Oxford (2006)
    • Jiang, Z.: On Severi type inequalities. Math. Ann. 379(1–2), 133–158 (2021)
    • Jiang, Z., Lahoz, M., Tirabassi, S.: Characterization of products of theta divisors. Compos. Math. 150(8), 1384–1412 (2014)
    • Jiang, Q., Leung, N.C.: Derived category of projectivizations and flops. Adv. Math. 396, 44 (2022)
    • Kawamata, Y.: Characterization of abelian varieties. Compos. Math. 43(2), 253–276 (1981)
    • Kawamata, Y.: D-equivalence and K-equivalence. J. Diff. Geom. 61, 147–171 (2002)
    • Kawamata, Y.: Birational geometry and derived categories, in Surveys in differential geometry 2017. Celebrating the 50th anniversary of the...
    • Kawatani, K., Okawa, S.: Nonexistence of semiorthogonal decompositions and sections of the canonical bundle, preprint arXiv:1508.00682v2 (2018)
    • Kuznetsov, A.: Semiorthogonal decompositions in algebraic geometry, in Proceedings of the International Congress of Mathematicians-Seoul 2014,...
    • Lin, X.: On nonexistence of semi-orthogonal decompositions in algebraic geometry, preprint arXiv:2107.09564v3 (2021)
    • Lombardi, L., Popa, M., Schnell, Ch.: Pushforwards of pluricanonical bundles under morphisms to abelian varieties. J. Eur. Math. Soc. 22(8),...
    • Mendes, M., Pardini, R., Pirola, G.P.: Brill-Noether loci for divisors on irregular varieties. J. Eur. Math. Soc. 16(10), 2033–2057 (2014)
    • Mumford, D.: Abelian varieties, Tata Institute of Fundamental Research Studies in Mathematics 5, Hindustan Book Agency, New Delhi, 2008 (With...
    • Okawa, S.: Semi-orthogonal decomposability of the derived category of a curve. Adv. Math. 228(5), 2869–2873 (2011)
    • Pareschi, G.: Current Developments in Algebraic Geometry. In: Basic results on irregular varieties via Fourier-Mukai methods, pp. 379–403....
    • Pareschi, G., Popa, M.: Regularity on abelian varieties I. J. Am. Math. Soc. 16(2), 285–302 (2003)
    • Pareschi, G., Popa, M.: M-regularity and the Fourier-Mukai transform. Pure Appl. Math. Q. 4(3), 587–611 (2008)
    • Pareschi, G., Popa, M.: Regularity on abelian varieties III: relationship with generic vanishing and applications. In: Grassmannians, moduli...
    • Pareschi, G., Popa, M., Schnell, C.: Hodge modules on complex tori and generic vanishing for compact Kähler manifolds. Geom. Topol. 21(4),...
    • Pirozhkov, D.: Stably semiorthogonally indecomposable varieties. Épijournal Géom. Algébrique 7, 15 (2023)
    • Polishchuk, A.: Abelian varieties, theta functions and the Fourier transform. Cambridge Univ Press, Cambridge (2002)
    • Schwarzenberger, R.L.E.: Jacobians and symmetric products. Illinois J. Math. 7, 257–268 (1963)
    • Toda, Y.: Semiorthogonal decompositions of stable pair moduli spaces via d-critical flips. J. Eur. Math. Soc. 23(5), 1675–1725 (2021)
    • Villadsen, M.B.: Chen-Jiang decompositions for projective varieties, without Hodge modules. Math. Z. 300(3), 2099–2116 (2022)
    • Zube, S.: Exceptional vector bundles on Enriques surfaces. Math. Notes 61(5–6), 693–699 (1997)

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno