Ir al contenido

Documat


Cohomologies of tautological bundles of matroids

  • Christopher Eur [1]
    1. [1] Carnegie Mellon University

      Carnegie Mellon University

      City of Pittsburgh, Estados Unidos

  • Localización: Selecta Mathematica, New Series, ISSN 1022-1824, Vol. 30, Nº. 5, 2024
  • Idioma: inglés
  • DOI: 10.1007/s00029-024-00979-7
  • Enlaces
  • Resumen
    • Tautological bundles of realizations of matroids were introduced in Berget et al. (Invent Math 233:951–1039, 2023) as a unifying geometric model for studying matroids. We compute the cohomologies of exterior and symmetric powers of these vector bundles, and show that they depend only on the matroid of the realization. As an application, we show that the log canonical bundle of a wonderful compactification of a hyperplane arrangement complement, in particular the moduli space of pointed rational curves M0,n, has vanishing higher cohomologies.

  • Referencias bibliográficas
    • Adiprasito, K., Huh, J., Katz, E.: Hodge theory for combinatorial geometries. Ann. Math. 188(2), 381–452 (2018)
    • Ardila, F., Klivans, C.J.: The Bergman complex of a matroid and phylogenetic trees. J. Combin. Theory Ser. B 96(1), 38–49 (2006)
    • Berget, A., Eur, C., Spink, H., Tseng, D.: Tautological classes of matroids. Invent. Math. 233(2), 951–1039 (2023)
    • Berget, A., Fink, A.: Equivariant K-theory classes of matrix orbit closures. Int. Math. Res. Not. IMRN 18, 14105–14133 (2022)
    • Brylawski, T.: The broken-circuit complex. Trans. Am. Math. Soc. 234(2), 417–433 (1977)
    • Cox, D.A., Little, J.B., Schenck, H.K.: Toric varieties. Graduate Studies in Mathematics, vol. 124. American Mathematical Society, Providence,...
    • Chatzistamatiou, A., Rülling, K.: Higher direct images of the structure sheaf in positive characteristic. Algebra Number Theory 5(6), 693–775...
    • De Concini, C., Procesi, C.: Wonderful models of subspace arrangements. Selecta Math. (N.S.) 1(3), 459–494 (1995)
    • Feichtner, E., Müller, I.: On the topology of nested set complexes. Proc. Am. Math. Soc. 133(4), 999–1006 (2005)
    • Fulton, W.: Introduction to toric varieties, volume 131 of Annals of Mathematics Studies. Princeton University Press, Princeton, NJ, The William...
    • Feichtner, E., Yuzvinsky, S.: Chow rings of toric varieties defined by atomic lattices. Invent. Math. 155(3), 515–536 (2004)
    • Hartshorne, R.: Algebraic geometry. Springer-Verlag, New York-Heidelberg, Graduate Texts in Mathematics, No. 52 (1977)
    • Hacking, P., Keel, S., Tevelev, J.: Compactification of the moduli space of hyperplane arrangements. J. Algebraic Geom. 15(4), 657–680 (2006)
    • Kapranov, M.M.: Chow quotients of Grassmannians. I. In I. M. Gelfand Seminar, volume 16 of Adv. Soviet Math., pages 29–110. Amer. Math. Soc.,...
    • Keel, S.: Intersection theory of moduli space of stable n-pointed curves of genus zero. Trans. Am. Math. Soc. 330(2), 545–574 (1992)
    • Keel, S., Tevelev, J.: Equations for M0,n. Internat. J. Math. 20(9), 1159–1184 (2009)
    • Lazarsfeld, R.: Positivity in algebraic geometry. I, volume 48 of Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of...
    • Lee, Y.-P.: A formula for Euler characteristics of tautological line bundles on the Deligne-Mumford moduli spaces. Int. Math. Res. Not. IMRN...
    • Losev, A., Manin, Y.: New moduli spaces of pointed curves and pencils of flat connections. Michigan Math. J. 48, 443–472 (2000). (Dedicated...
    • Las Vergnas, M.: On products of matroids. Discrete Math. 36(1), 49–55 (1981)
    • Mason, J.H.: Glueing matroids together: a study of Dilworth truncations and matroid analogues of exterior and symmetric powers. In Algebraic...
    • Oxley, J.: Matroid theory, volume 21 of Oxford Graduate Texts in Mathematics. Oxford University Press, Oxford, 2 edition, (2011)
    • Pandharipande, R.: The symmetric function h0(M0,n, L x11 ⊗L x22 ⊗···⊗L xn n ). J. Algebraic Geom.6(4), 721–731 (1997)
    • Speyer, D.E.: Tropical linear spaces. SIAM J. Discrete Math. 22(4), 1527–1558 (2008)
    • Speyer, D.E.: A matroid invariant via the K-theory of the Grassmannian. Adv. Math. 221(3), 882–913 (2009)
    • Sturmfels, B.: Solving systems of polynomial equations, volume 97 of CBMS Regional Conference Series in Mathematics. Published for the Conference...
    • Welsh, D.: The Tutte polynomial. Statistical physics methods in discrete probability, combinatorics, and theoretical computer science (Princeton,...

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno