Ir al contenido

Documat


Classes of homothetic convex sets

  • V. Soltan [1]
    1. [1] George Mason University

      George Mason University

      Estados Unidos

  • Localización: Extracta mathematicae, ISSN-e 0213-8743, Vol. 39, Nº 2, 2024, págs. 135-171
  • Idioma: inglés
  • DOI: 10.17398/2605-5686.39.2.135
  • Enlaces
  • Resumen
    • This is a survey of known results and still open problems on characteristic properties of classes of homothetic convex sets in the n-dimensional Euclidean space. These properties are formulated in terms of orthogonal projections, plane sections, homothety classes, Choquet simplices, and homothetic tilings and partitions.

  • Referencias bibliográficas
    • A.D. Alexandrov, A theorem on convex polyhedra, Trudy Fiz.-Mat. Inst. Steklov. Sect. Math. 4 (1933), 87.
    • A.D. Alexandrov, An elementary proof of the existence of the center of symmetry of a three-dimensional parallelohedron, Trudy Fiz.-Mat. Inst....
    • A.D. Alexandrov, Deduction of four-dimensional non-normal parallelohedra, Izv. Akad Nauk. Ser. Mat. (1934), 803 – 817.
    • A.D. Alexandrov, An elementary proof of the Minkowski and some other theorems on convex polyhedra, Izv. Akad. Nauk. Ser. Mat. (1937), 597...
    • A.D. Alexandrov, On the theory of mixed volumes of convex bodies. II. New inequalities between mixed volumes and their applications, Mat....
    • A.D. Alexandrov, “Convex Polyhedra”, Gosudarstv. Izdat. Tehn.-Teor. Lit., Moscow-Leningrad, 1950.
    • M.A. Alfonseca, M. Cordier, D. Ryabogin, On bodies with directly congruent projections and sections, Israel J. Math. 215 (2016), 765 – 799.
    • M.A. Alfonseca, M. Cordier, D. Ryabogin, On bodies in R5 with directly congruent projections or sections, Rev. Mat. Iberoam. 35 (2019), 1745...
    • J. Bair, R. Fourneau, “Étude géométrique des espaces vectoriels”, Lecture Notes in Math., Vol. 489, Springer-Verlag, Berlin-New York, 1975.
    • V. Boltyanski, H. Martini, P.S. Soltan, “Excursions into combinatorial geometry”, Universitext Springer-Verlag, Berlin, 1997.
    • T. Bonnesen, Om Minkowskis uligheder for konvekse legemer, Mat. Tidsskr. B (1926), 7 – 21 and 74 – 80.
    • T. Bonnesen, “Les problèmes des isopérimètres et des isépiphanes”, Gauthier-Villars, Paris, 1929.
    • T. Bonnesen, W. Fenchel, “Theorie der konvexen Körper”,Ergeb. Math. Grenzgeb., Band 3, Heft 1, Springer, Berlin, 1934.
    • K. Böröczky, Jr., “Finite packing and covering”, Cambridge Tracts in Math., 154, Cambridge University Press, Cambridge, 2004.
    • P. Brass, W. Moser, J. Pach, “Research problems in discrete geometry”, Springer, New York, 2005.
    • H. Brunn, “Über Ovale und Eiflächen”, Inaugural Dissertation, Straub, München, 1887.
    • H. Brunn, “Über Kurven ohne Wendepunkte”, Habilitationsschrift, Ackermann, München, 1889.
    • G.R. Burton, Sections of convex bodies, J. London Math. Soc. 12 (1975/76), 331 – 336.
    • G.R. Burton, P. Mani, A characterisation of the ellipsoid in terms of concurrent sections, Comment. Math. Helv. 53 (1978), 485 – 507.
    • H. Busemann, C.M. Petty, Problems on convex bodies, Math. Scand. 4 (1956), 88 – 94.
    • G. Choquet, Unicité des représentations intégrales au moyen de points extrémaux dans les cônes convexes réticulés, C. R. Acad. Sci. Paris...
    • H.S.M. Coxeter, “Regular Polytopes”, Methuen & Co., Ltd., London; Pitman Publishing Corp., New York, 1948.
    • H.S.M. Coxeter, The classification of zonohedra by means of projective diagrams, J. Math. Pures Appl. 41 (1962), 137 – 156.
    • B.N. Delaunay, Sur la partition regulière de l’espace à 4-dimensions, I and II, Izv. Akad. Nauk. Ser. Mat. (1929), 79 – 110 and 147 – 164.
    • B.N. Delaunay, Sur la generalisation de la théorie des paralléloèdres, Izv. Akad. Nauk. Ser. Mat. (1933), 641 – 646.
    • B.N. Delaunay, Neue Darstellung der geometrischen Kristallographie, Z. Kristal. 84 (1933), 109 – 149.
    • M. Deza, V.P. Grishukhin, More about the 52 four-dimensional parallelotopes, Taiwanese J. Math. 12 (2008), 901 – 916.
    • N.P. Dolbilin, Properties of faces of parallelohedra, Tr. Mat. Inst. Steklova 266 (2009), 112 – 126.
    • N.P. Dolbilin, M.A. Kozachok, On polyhedra with centrally symmetric faces, Chebyshevskiı̆ Sb. 11 (2010), 109 – 115.
    • P. Engel, “Geometric crystallography. An axiomatic introduction to cristallography”, D. Reidel Publishing Company, Dordrecht, 1986.
    • P. Engel, The contraction types of parallelohedra in E 5 , Acta Cryst. Sect. A 56 (2000), 491 – 496.
    • E.S. Fedorov, “Elements of the theory of figures”, Imperial Petersburg Mineralogical Society, St. Petersburg, 1885.
    • R. Fourneau, Nonclosed simplices and quasi-simplices, Mathematika 24 (1977), 71 – 85.
    • R.J. Gardner, The Brunn-Minkowski inequality, Bull. Amer. Math. Soc. (N.S.) 39 (2002), 355 – 405.
    • R.J. Gardner, “Geometric tomography. Second edition”, Encyclopedia Math. Appl., 58, Cambridge University Press, New York, 2006.
    • R.J. Gardner, A. Volčič, Convex bodies with similar projections, Proc. Amer. Math. Soc. 121 (1994), 563 – 568.
    • M.A. Goberna, E. González, J.E. Martı́nez-Legaz, M.I. Todorov, Motzkin decomposition of closed convex sets, J. Math. Anal. Appl. 364 (2010),...
    • V.P. Golubyatnikov, On the determination of the form of a body from its projections, Dokl. Akad. Nauk SSSR 262 (1982), 521 – 522.
    • V.P. Golubyatnikov, On the unique determination of visible bodies from their projections, Sibirsk. Mat. Zh. 29 (1988), 92 – 96.
    • V.P. Golubyatnikov, On the unique reconstructibility of compact convex sets from their projections, Sibirsk. Mat. Zh. 31 (1990), 196 – 199.
    • V.P. Golubyatnikov, On the unique reconstructibility of convex and visible compact sets from their projections. II, Sibirsk. Mat. Zh. 36 (1995),...
    • V.P. Golubyatnikov, “Uniqueness questions in reconstruction of multidimensional objects from tomography-type projection data”, De Gruyter,...
    • P.R. Goodey, Homothetic ellipsoids, Math. Proc. Cambridge Philos. Soc. 93 (1983), 25 – 34.
    • P.R. Goodey, R. Schneider, W. Weil, Projection functions of convex bodies, in: “Intuitive geometry” (Proceedings of the 5th Conference held...
    • P.R. Goodey, The determination of convex bodies from the size and shape of their projections and sections, in “Convex and fractal geometry”,...
    • H. Groemer, Abschätzungen für die Anzahl der konvexen Körper, die einen konvexen Körper berühren, Monatsh. Math. 65 (1961), 74 – 81.
    • H. Groemer, Ein Satz über konvexe Körper und deren Projektionen, Portugal. Math. 21 (1962), 41 – 43.
    • H. Groemer, Über die Zerlegung eines konvexen Körpers in homothetische konvexe Körper, Math. Ann. 154 (1964), 88 – 102.
    • H. Groemer, Über die Zerlegung des Raumes in homothetische konvexe Körper, Monatsh. Math. 68 (1964), 21 – 32.
    • H. Groemer, Über translative Zerlegungen konvexer Körper, Arch. Math. (Basel) 19 (1968), 445 – 448.
    • H. Groemer, On translative subdivisions of convex domains, Enseign. Math. (2) 20 (1974), 227 – 231.
    • H. Groemer, Stability theorems for projections of convex sets, Israel J. Math. 60 (1987), 177 – 190.
    • H. Groemer, On the determination of convex bodies by translates of their projections, Geom. Dedicata 66 (1997), 265 – 279.
    • P.M. Gruber, Über kennzeichnende Eigenschaften von eukclidischen Räumen und Ellipsoiden. II, J. Reine Angew. Math. 270 (1974), 123 – 142.
    • P.M. Gruber, “Convex and discrete geometry”, Grundlehren Math. Wiss., 336, Springer, Berlin, 2007.
    • B. Grünbaum, G.C. Shephard, Tiling with congruent tiles, Bull. Amer. Math. Soc. (N.S.) 3 (1980), 951 – 973.
    • H. Hadwiger, Minkowskische Addition und Subtraktion beliebiger Punktmengen und die Theoreme von Erhard Schmidt, Math. Z. 53 (1950), 210 –...
    • H. Hadwiger, Seitenrisse konvexer Körper und Homothetie, Elem. Math. 18 (1963), 97 – 98.
    • E. Heil, H. Martini, Special convex bodies, in “Handbook of convex geometry, Vol. A,B”, P.M. Gruber, J.M. Wills (eds), North-Holland Publishing...
    • D. Hinrichsen, U. Krause, Choice of techniques in joint production models, in “Third Symposium on Operations Research. Section 4. Mathematical...
    • D. Hinrichsen, U. Krause, Unique representation in convex sets by extraction of marked components, Linear Algebra Appl. 51 (1983), 73 – 96.
    • J. Jerónimo-Castro, L. Montejano, E. Morales-Amaya, Shaken Rogers’s theorem for homothetic sections, Canad. Math. Bull. 52 (2009), 403 – 406.
    • A.B. Kharazishvili, Characterization properties of a parallelepiped, Sakharth. SSR Mecn. Akad. Moambe 72 (1973), 17 – 19.
    • T. Kubota, Ein synthetischer Beweis eines Satzes über Eiflächen, Jap. J. Math. 7 (1930), 171 – 172.
    • J. Lawrence, V. Soltan, On unions and intersections of nested families of cones, Beitr. Algebra Geom. 57 (2016), 655 – 665.
    • K. Leichtweiß, “Konvexe Mengen”, Springer-Verlag, Berlin-New York, 1980.
    • E. Lutwak, Intersection bodies and dual mixed volumes, Adv. in Math. 71 (1988), 232 – 261.
    • E. Lutwak, Selected affine isoperimetric inequalities, in “Handbook of convex geometry, Vol. A, B”, North-Holland Publishing Co., Amsterdam,...
    • B. Mackey, SO(2)-congruent projections of convex bodies with rotation about the origin, Proc. Amer. Math. Soc. 143 (2015), 1739 – 1744.
    • H. Martini, L. Montejano, D. Oliveros, “Bodies of constant width”, Birkhäuser/Springer, Cham, 2019.
    • P. McMullen, Polytopes with centrally symmetric faces, Israel J. Math. 8 (1970), 194 – 196.
    • P. McMullen, Polytopes with centrally symmetric facets, Israel J. Math. 23 (1976), 337 – 338.
    • P. McMullen, Convex bodies which tile space by translation, Mathematika 27 (1980), 113 – 121.
    • P. McMullen, Convex bodies which tile space, in “The geometric vein”, Springer-Verlag, New York-Berlin, 1981, 123 – 128.
    • P. McMullen, “Geometric regular polytopes”, Encyclopedia Math. Appl., 172, Cambridge University Press, Cambridge, 2020.
    • E. Milman, S. Shabelman, A. Yehudayoff, Fixed and periodic points of the intersection body operator, arXiv:2408.08171v3, 2 Sep. 2024, 47 pp.
    • H. Minkowski, Allgemeine Lehrsätze über die konvexen Polyeder, Nachr. Konigl. Ges. Wiss. Göttingen (1897), 198 – 219.
    • H. Minkowski, “Geometrie der Zahlen. I”. Teubner, Leipzig, 1896; “II”. Teubner, Leipzig, 1910.
    • L. Montejano, Two applications of topology to convex geometry, Tr. Mat. Inst. Steklova 247 (2004), 182 – 185
    • W. Moser, An enumeration of the five parallelohedra, Canad. Math. Bull. 4 (1961), 45 – 47.
    • S. Myroshnychenko, D. Ryabogin, On polytopes with congruent projections or sections, Adv. Math. 325 (2018), 482 – 504.
    • S. Nakajima, Über homothetische Eiflächen, Jap. J. Math. 7 (1930), 167 – 169.
    • S. Nakajima, Eine Kennzichnung homothetischer Eiflächen, Tôhoku Math. J. 35 (1932), 285 – 286.
    • S.P. Olovjanishnikov, On a characterization of the ellipsoid, Učen. Zap. Leningrad. State Univ. Ser. Mat. 83 (1941), 114 – 128.
    • C.M. Petty, Ellipsoids, in “Convexity and its applications”, edited by P.M. Gruber and J.M. Wills, Birkhäuser Verlag, Basel-Boston, Mass.,...
    • C.M. Petty, J.R. McKinney, Convex bodies with circumscribing boxes of constant volume, Portugal. Math. 44 (1987), 447 – 455.
    • R.R. Phelps, “Lectures on Choquet’s theorem”, Second edition, Lecture Notes in Math., 1757, Springer-Verlag, Berlin, 2001.
    • R.T. Rockafellar, “Convex analysis”, Princeton Math. Ser., No. 28, Princeton University Press, Princeton, NJ, 1970.
    • C.A. Rogers, Sections and projections of convex bodies, Portugal. Math. 24 (1965), 99 – 103.
    • C.A. Rogers, G.C. Shephard, The difference body of a convex body, Arch. Math. (Basel) 8 (1957), 220 – 233.
    • D. Ryabogin, On the continual Rubik’s cube, Adv. Math. 231 (2012), 3429 – 3444.
    • D. Ryabogin, A lemma of Nakajima and Süss on convex bodies, Amer. Math. Monthly 122 (2015), 890 – 892.
    • G.T. Sallee, On the indecomposability of the cone, J. London Math. Soc. (2) 9 (1974/75), 363 – 367.
    • G.T. Sallee, Tiling convex sets by translates, Israel J. Math. 24 (1976), 368 – 376.
    • R. Schneider, “Convex bodies: the Brunn-Minkowski theory”, second expanded edition, Encyclopedia Math. Appl., 151, Cambridge University Press,...
    • G.C. Shephard, Polytopes with centrally symmetric faces, Canadian J. Math. 19 (1967), 1206 – 1213.
    • C. Schütt, E. Werner, Homothetic floating bodies, Geom. Dedicata 49 (1994), 335 – 348.
    • V. Soltan, A characterization of homothetic simplices, Discrete Comput. Geom. 22 (1999), 193 – 200.
    • V. Soltan, Choquet simplexes in finite dimension – a survey, Expo. Math. 22 (2004), 301 – 315.
    • V. Soltan, Pairs of convex bodies with centrally symmetric intersections of translates, Discrete Comput. Geom. 33 (2005), 605 – 616.
    • V. Soltan, Sections and projections of homothetic convex bodies, J. Geom. 84 (2005), 152 – 163.
    • V. Soltan, Addition and subtraction of homothety classes of convex sets, Beiträge Algebra Geom. 47 (2006), 351 – 361.
    • V. Soltan, Line-free convex bodies with centrally symmetric intersections of translates, Rev. Roumaine Math. Pures Appl. 51 (2006), 111 –...
    • V. Soltan, Convex solids with planar homothetic sections through given points, J. Convex Anal. 16 (2009), 473 – 486.
    • V. Soltan, Convex sets with homothetic projections, Beiträge Algebra Geom. 51 (2010), 237 – 249.
    • V. Soltan, A characteristic intersection property of generalized simplices, J. Convex Anal. 18 (2011), 529 – 543.
    • V. Soltan, Convex hypersurfaces with hyperplanar intersections of their homothetic copies, J. Convex Anal. 22 (2015), 145 – 159.
    • V. Soltan, Characteristic properties of ellipsoids and convex quadrics, Aequationes Math. 93 (2019), 371 – 413.
    • V. Soltan, “Lectures on convex sets”, second edition, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2020.
    • V. Soltan, On M-decomposable sets, J. Math. Anal. Appl. 485 (2020), Art. 123816, 15 pp.
    • V. Soltan, On M-predecomposable sets, Beitr. Algebra Geom. 62 (2021), 205 – 218.
    • V. Soltan, Boundedly polyhedral sets and F -simplices, J. Convex Anal. 29 (2022), 807 – 826.
    • V. Soltan, Projections and generated cones of homothetic convex sets, Beitr. Algebra Geom. 64 (2023), 127 – 143.
    • M.I. Shtogrin, “Regular Dirichlet-Voronoı̆ partitions for the second triclinic group”, Proceedings of the Steklov Institute of Mathematics,...
    • A. Stancu, The floating body problem, Bull. London Math. Soc. 38 (2006), 839 – 846.
    • W. Süss, Zu Minkowskis Theorie von Volumen und Oberfläche, Math. Ann. 101 (1929), 253 – 260.
    • W. Süss, Zusammensetzung von Eikörpern und Homothetische Eiflächen, Tôhoku Math. J. 35 (1932), 47 – 50.
    • J. Székely, The orthogonal projections and homotheticity of convex bodies, Mat. Lapok 16 (1965), 52 – 56.
    • B.A. Venkov, On a class of Euclidean polyhedra, Vestnik Leningrad. Univ. Ser. Mat. Fiz. Him. 9 (1954), 11 – 31.
    • G. Voronoı̆, Nouvelles applications des paramètres continus à la théorie des formes quadratiques. Recherches sur les paralléloèdres primitifs,...
    • G. Voronoı̆, Nouvelles applications des paramètres continus à la théorie des formes quadratiques. Recherches sur les paralléloèdres primitifs,...
    • E. Werner, D. Ye, On the homothety conjecture, Indiana Univ. Math. J. 60 (2011), 1 – 20.
    • N. Zhang, On bodies with congruent sections or projections, J. Differential Equations 265 (2018), 2064 – 2075

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno