Ir al contenido

Documat


The limit case in a nonlocal p -Laplacian equation with dynamical boundary conditions

  • Eylem Öztürk [1]
    1. [1] Hacettepe University

      Hacettepe University

      Turquía

  • Localización: Revista de la Unión Matemática Argentina, ISSN 0041-6932, ISSN-e 1669-9637, Vol. 67, Nº. 2, 2024, págs. 567-591
  • Idioma: inglés
  • DOI: 10.33044/revuma.4631
  • Enlaces
  • Resumen
    • In this paper we deal with the limit as p→∞ for the nonlocal analogous to the p-Laplacian evolution with dynamic boundary conditions. Our main result demonstrates this limit in both the elliptic and parabolic cases. We are interested in smooth and singular kernels and show the existence and uniqueness of a limit solution. We obtain that the limit solution of the elliptic problem turns out to be also a viscosity solution of a corresponding problem. We prove that the natural energy functionals associated with this problem converge, in the sense of Mosco, to a limit functional and therefore we obtain convergence of solutions to the evolution problems in the parabolic case. For the limit problem, we provide examples of explicit solutions for some particular data.

  • Referencias bibliográficas
    • F. Andreu, J. M. Mazón, J. D. Rossi, and J. Toledo, The limit as p→∞ in a nonlocal p-Laplacian evolution equation: a nonlocal approximation...
    • F. Andreu, J. M. Mazón, J. D. Rossi, and J. Toledo, A nonlocal p-Laplacian evolution equation with nonhomogeneous Dirichlet boundary conditions,...
    • F. Andreu, J. M. Mazón, J. D. Rossi, and J. Toledo, The Neumann problem for nonlocal nonlinear diffusion equations, J. Evol. Equ. 8 no. 1...
    • F. Andreu-Vaillo, J. M. Mazón, J. D. Rossi, and J. J. Toledo-Melero, Nonlocal diffusion problems, Math. Surv. Monogr. 165, American Mathematical...
    • G. Aronsson, L. C. Evans, and Y. Wu, Fast/slow diffusion and growing sandpiles, J. Differential Equations 131 no. 2 (1996), 304–335. DOI...
    • H. Attouch, Familles d'opérateurs maximaux monotones et mesurabilité, Ann. Mat. Pura Appl. (4) 120 (1979), 35–111. DOI MR Zbl
    • P. W. Bates and A. Chmaj, An integrodifferential model for phase transitions: stationary solutions in higher space dimensions, J. Statist....
    • P. W. Bates, P. C. Fife, X. Ren, and X. Wang, Traveling waves in a convolution model for phase transitions, Arch. Rational Mech. Anal. 138...
    • P. M. Berná and J. D. Rossi, Nonlocal diffusion equations with dynamical boundary conditions, Nonlinear Anal. 195 (2020), article no. 111751,...
    • T. Bhattacharya, E. DiBenedetto, and J. Manfredi, Limits as p→∞ of Δpup=f and related extremal problems, Rend. Sem. Mat. Univ. Politec....
    • H. Brézis, Équations et inéquations non linéaires dans les espaces vectoriels en dualité, Ann. Inst. Fourier (Grenoble) 18 no. 1 (1968), 115–175....
    • H. Brézis, Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert, North-Holland Mathematics Studies 5,...
    • H. Brézis and A. Pazy, Convergence and approximation of semigroups of nonlinear operators in Banach spaces, J. Funct. Anal. 9 (1972), 63–74....
    • C. Carrillo and P. Fife, Spatial effects in discrete generation population models, J. Math. Biol. 50 no. 2 (2005), 161–188. DOI MR Zbl
    • A. Chambolle, E. Lindgren, and R. Monneau, A Hölder infinity Laplacian, ESAIM Control Optim. Calc. Var. 18 no. 3 (2012), 799–835. DOI MR...
    • X. Chen, Existence, uniqueness, and asymptotic stability of traveling waves in nonlocal evolution equations, Adv. Differential Equations 2...
    • C. Cortazar, M. Elgueta, J. D. Rossi, and N. Wolanski, Boundary fluxes for nonlocal diffusion, J. Differential Equations 234 no. 2 (2007),...
    • C. Cortazar, M. Elgueta, J. D. Rossi, and N. Wolanski, How to approximate the heat equation with Neumann boundary conditions by nonlocal diffusion...
    • L. C. Evans, M. Feldman, and R. F. Gariepy, Fast/slow diffusion and collapsing sandpiles, J. Differential Equations 137 no. 1 (1997), 166–209....
    • P. Fife, Some nonclassical trends in parabolic and parabolic-like evolutions, in Trends in nonlinear analysis, Springer, Berlin, 2003, pp....
    • P. Fife and X. Wang, A convolution model for interfacial motion: the generation and propagation of internal layers in higher space dimensions,...
    • E. Lindgren and P. Lindqvist, Fractional eigenvalues, Calc. Var. Partial Differential Equations 49 no. 1-2 (2014), 795–826. DOI MR Zbl
    • J. M. Mazón, M. Solera-Diana, and J. J. Toledo-Melero, Variational and diffusion problems in random walk spaces, Prog. Nonlinear Differ. Equ....
    • U. Mosco, Approximation of the solutions of some variational inequalities, Ann. Scuola Norm. Sup. Pisa (3) 21 (1967), 373–394; erratum: 21...
    • U. Mosco, Convergence of convex sets and of solutions of variational inequalities, Advances in Math. 3 (1969), 510–585. DOI MR Zbl
    • E. Öztürk and J. D. Rossi, Limit for the p-Laplacian equation with dynamical boundary conditions, Electron. J. Differential Equations no....
    • M. Solera and J. Toledo, Nonlocal doubly nonlinear diffusion problems with nonlinear boundary conditions, J. Evol. Equ. 23 no. 2 (2023), article...
    • X. Wang, Metastability and stability of patterns in a convolution model for phase transitions, J. Differential Equations 183 no. 2 (2002),...
    • L. Zhang, Existence, uniqueness and exponential stability of traveling wave solutions of some integral differential equations arising from...

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno