Ir al contenido

Documat


Evolution of first eigenvalues of some geometric operators under the rescaled List's extended Ricci flow

  • Shahroud Azami [1] ; Abimbola Abolarinwa [2]
    1. [1] Imam Khomeini International University

      Imam Khomeini International University

      Irán

    2. [2] University of Lagos

      University of Lagos

      Nigeria

  • Localización: Revista de la Unión Matemática Argentina, ISSN 0041-6932, ISSN-e 1669-9637, Vol. 67, Nº. 2, 2024, págs. 529-543
  • Idioma: inglés
  • DOI: 10.33044/revuma.3413
  • Enlaces
  • Referencias bibliográficas
    • A. Abolarinwa, Eigenvalues of the weighted Laplacian under the extended Ricci flow, Adv. Geom. 19 no. 1 (2019), 131–143. DOI MR Zbl
    • A. Abolarinwa and S. Azami, First eigenvalues evolution for some geometric operators along the Yamabe flow, J. Geom. 115 no. 1 (2024), Paper...
    • S. Azami, First eigenvalues of geometric operator under the Ricci-Bourguignon flow, J. Indones. Math. Soc. 24 no. 1 (2018), 51–60. DOI MR...
    • S. Azami, Evolution of eigenvalues of geometric operator under the rescaled List's extended Ricci flow, Bull. Iranian Math. Soc. 48 no....
    • X. Cao, Eigenvalues of (−Δ+R2) on manifolds with nonnegative curvature operator, Math. Ann. 337 no. 2 (2007), 435–441. DOI MR Zbl
    • X. Cao, First eigenvalues of geometric operators under the Ricci flow, Proc. Amer. Math. Soc. 136 no. 11 (2008), 4075–4078. DOI MR Zbl
    • B. Chen, Q. He, and F. Zeng, Monotonicity of eigenvalues of geometric operators along the Ricci-Bourguignon flow, Pacific J. Math. 296 no....
    • S. Fang, H. Xu, and P. Zhu, Evolution and monotonicity of eigenvalues under the Ricci flow, Sci. China Math. 58 no. 8 (2015), 1737–1744. ...
    • S. Fang, F. Yang, and P. Zhu, Eigenvalues of geometric operators related to the Witten Laplacian under the Ricci flow, Glasg. Math. J. 59...
    • G. Huang and Z. Li, Monotonicity formulas of eigenvalues and energy functionals along the rescaled List's extended Ricci flow, Mediterr....
    • J. Li, Evolution of eigenvalues along rescaled Ricci flow, Canad. Math. Bull. 56 no. 1 (2013), 127–135. DOI MR Zbl
    • B. List, Evolution of an extended Ricci flow system, Comm. Anal. Geom. 16 no. 5 (2008), 1007–1048. DOI MR Zbl
    • G. Perelman, The entropy formula for the Ricci flow and its geometric applications, 2002. arXiv:0211159 [math.DG].
    • F. Yang and L. Zhang, On the evolution and monotonicity of first eigenvalues under the Ricci flow, Hokkaido Math. J. 51 no. 1 (2022), 107–116....

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno