Ir al contenido

Documat


One-sided EP elements in rings with involution

  • Cang Wu [1] ; Jianlong Chen [2] ; Yu Chen [3]
    1. [1] Nanjing Forestry University

      Nanjing Forestry University

      China

    2. [2] Southeast University

      Southeast University

      China

    3. [3] School of Electronic Science and Engineering, Hunan University of Information Technology, Republic of China
  • Localización: Revista de la Unión Matemática Argentina, ISSN 0041-6932, ISSN-e 1669-9637, Vol. 67, Nº. 2, 2024, págs. 517-528
  • Idioma: inglés
  • DOI: 10.33044/revuma.3572
  • Enlaces
  • Referencias bibliográficas
    • R. B. Bapat, S. K. Jain, K. M. P. Karantha, and M. D. Raj, Outer inverses: characterization and applications, Linear Algebra Appl. 528 (2017),...
    • A. Ben-Israel and T. N. E. Greville, Generalized inverses: theory and applications, second ed., CMS Books in Mathematics/Ouvrages de Mathématiques...
    • E. Boasso, On the Moore-Penrose inverse, EP Banach space operators, and EP Banach algebra elements, J. Math. Anal. Appl. 339 no. 2 (2008),...
    • W. Chen, On EP elements, normal elements and partial isometries in rings with involution, Electron. J. Linear Algebra 23 (2012), 553–561....
    • M. P. Drazin, A class of outer generalized inverses, Linear Algebra Appl. 436 no. 7 (2012), 1909–1923. DOI MR Zbl
    • M. P. Drazin, Left and right generalized inverses, Linear Algebra Appl. 510 (2016), 64–78. DOI MR Zbl
    • R. E. Hartwig, Block generalized inverses, Arch. Rational Mech. Anal. 61 no. 3 (1976), 197–251. DOI MR Zbl
    • R. E. Hartwig and K. Spindelböck, Matrices for which A∗and A\dag commute, Linear and Multilinear Algebra 14 no. 3 (1983), 241–256. DOI MR...
    • N. Jacobson, Some remarks on one-sided inverses, Proc. Amer. Math. Soc. 1 (1950), 352–355. DOI MR Zbl
    • H. Jin and J. Benitez, The absorption laws for the generalized inverses in rings, Electron. J. Linear Algebra 30 (2015), 827–842. DOI MR...
    • I. Kaplansky, Any orthocomplemented complete modular lattice is a continuous geometry, Ann. of Math. (2) 61 (1955), 524–541. DOI MR Zbl
    • J. J. Koliha, D. Djordjević, and D. Cvetković-Ilić, Moore-Penrose inverse in rings with involution, Linear Algebra Appl. 426 no. 2-3 (2007),...
    • J. J. Koliha and P. Patricio, Elements of rings with equal spectral idempotents, J. Aust. Math. Soc. 72 no. 1 (2002), 137–152. DOI MR Zbl
    • X. Liu, H. Jin, and D. Cvetković-Ilić, The absorption laws for the generalized inverses, Appl. Math. Comput. 219 no. 4 (2012), 2053–2059....
    • J. Marovt, On partial orders in proper ∗-rings, Rev. Un. Mat. Argentina 59 no. 1 (2018), 193–204. DOI MR Zbl
    • J. Marovt and D. Mosić, On some orders in ∗-rings based on the core-EP decomposition, J. Algebra Appl. 21 no. 1 (2022), Paper No. 2250010,...
    • X. Mary, On generalized inverses and Green's relations, Linear Algebra Appl. 434 no. 8 (2011), 1836–1844. DOI MR Zbl
    • D. Mosić and D. S. Djordjević, Partial isometries and EP elements in rings with involution, Electron. J. Linear Algebra 18 (2009), 761–772....
    • D. Mosić and D. S. Djordjević, Further results on partial isometries and EP elements in rings with involution, Math. Comput. Modelling 54...
    • D. Mosić and D. S. Djordjević, New characterizations of EP, generalized normal and generalized Hermitian elements in rings, Appl. Math. Comput....
    • D. Mosić, D. S. Djordjević, and J. J. Koliha, EP elements in rings, Linear Algebra Appl. 431 no. 5-7 (2009), 527–535. DOI MR Zbl
    • P. Patrício and R. Puystjens, Drazin-Moore-Penrose invertibility in rings, Linear Algebra Appl. 389 (2004), 159–173. DOI MR Zbl
    • R. Penrose, A generalized inverse for matrices, Proc. Cambridge Philos. Soc. 51 (1955), 406–413. MR Zbl
    • D. S. Rakić, N. Č. Dinčić, and D. S. Djordjević, Group, Moore-Penrose, core and dual core inverse in rings with involution, Linear Algebra...
    • H. Schwerdtfeger, Introduction to linear algebra and the theory of matrices, P. Noordhoff, Groningen, 1950. MR Zbl
    • C. Wu and J. Chen, Left core inverses in rings with involution, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 116 no. 2 (2022),...
    • S. Xu, J. Chen, and J. Benítez, EP elements in rings with involution, Bull. Malays. Math. Sci. Soc. 42 no. 6 (2019), 3409–3426. DOI MR ...
    • H. Zhu, J. Chen, and P. Patrício, Further results on the inverse along an element in semigroups and rings, Linear Multilinear Algebra 64 no....

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno