Ir al contenido

Documat


Boundedness of geometric invariants near a singularity which is a suspension of a singular curve

  • Luciana F. Martins [1] ; Kentaro Saji [2] ; Samuel P. dos Santos [1] ; Keisuke Teramoto [3]
    1. [1] Universidade Estadual Paulista

      Universidade Estadual Paulista

      Brasil

    2. [2] Kobe University

      Kobe University

      Chuo-ku, Japón

    3. [3] Yamaguchi University

      Yamaguchi University

      Japón

  • Localización: Revista de la Unión Matemática Argentina, ISSN 0041-6932, ISSN-e 1669-9637, Vol. 67, Nº. 2, 2024, págs. 475-502
  • Idioma: inglés
  • DOI: 10.33044/revuma.3492
  • Enlaces
  • Resumen
    • Near a singular point of a surface or a curve, geometric invariants diverge in general, and the orders of this divergence, in particular the boundedness about these invariants, represent the geometry of the surface and the curve. In this paper, we study the boundedness and orders of several geometric invariants near a singular point of a surface which is a suspension of a singular curve in the plane, and those of the curves passing through the singular point. We evaluate the orders of the Gaussian and mean curvatures, as well as those of the geodesic and normal curvatures, and the geodesic torsion for the curve.

  • Referencias bibliográficas
    • M. P. do Carmo, Differential geometry of curves and surfaces, Prentice-Hall, Englewood Cliffs, NJ, 1976. MR Zbl
    • W. Domitrz and M. Zwierzyński, The Gauss-Bonnet theorem for coherent tangent bundles over surfaces with boundary and its applications, J....
    • S. Fujimori, K. Saji, M. Umehara, and K. Yamada, Singularities of maximal surfaces, Math. Z. 259 no. 4 (2008), 827–848. DOI MR Zbl
    • T. Fukui, Local differential geometry of singular curves with finite multiplicities, Saitama Math. J. 31 (2017), 79–88. MR Zbl
    • T. Fukunaga and M. Takahashi, Framed surfaces in the Euclidean space, Bull. Braz. Math. Soc. (N.S.) 50 no. 1 (2019), 37–65. DOI MR Zbl
    • M. Hasegawa, A. Honda, K. Naokawa, K. Saji, M. Umehara, and K. Yamada, Intrinsic properties of surfaces with singularities, Internat. J. Math....
    • A. Honda and H. Sato, Singularities of spacelike mean curvature one surfaces in de Sitter space, 2021. arXiv:2103.13849 [math.DG].
    • A. Honda and K. Saji, Geometric invariants of 5/2-cuspidal edges, Kodai Math. J. 42 no. 3 (2019), 496–525. DOI MR Zbl
    • S. Izumiya, M. C. Romero Fuster, M. A. S. Ruas, and F. Tari, Differential geometry from a singularity theory viewpoint, World Scientific,...
    • L. F. Martins and K. Saji, Geometric invariants of cuspidal edges, Canad. J. Math. 68 no. 2 (2016), 445–462. DOI MR Zbl
    • L. F. Martins, K. Saji, S. P. D. Santos, and K. Teramoto, Singular surfaces of revolution with prescribed unbounded mean curvature, An. Acad....
    • L. F. Martins, K. Saji, M. Umehara, and K. Yamada, Behavior of Gaussian curvature and mean curvature near non-degenerate singular points on...
    • K. Saji, M. Umehara, and K. Yamada, The geometry of fronts, Ann. of Math. (2) 169 no. 2 (2009), 491–529. DOI MR Zbl
    • S. Shiba and M. Umehara, The behavior of curvature functions at cusps and inflection points, Differential Geom. Appl. 30 no. 3 (2012), 285–299....
    • M. Takahashi and K. Teramoto, Surfaces of revolution of frontals in the Euclidean space, Bull. Braz. Math. Soc. (N.S.) 51 no. 4 (2020), 887–914....

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno