Ir al contenido

Documat


Extinction time of an epidemic with infection-age-dependent infectivity

  • Anicet Mougabe-Peurkor [1] ; Ibrahima Dramé [2] ; Modeste N'zi [1] ; Étienne Pardoux [3] Árbol académico
    1. [1] Universit´e F´elix Houphouet Boigny, Abidjan, Cˆote d’Ivoire
    2. [2] Universit´e Cheikh Anta Diop de Dakar, Senegal
    3. [3] Aix Marseille Université, France
  • Localización: Revista de la Unión Matemática Argentina, ISSN 0041-6932, ISSN-e 1669-9637, Vol. 67, Nº. 2, 2024, págs. 417-443
  • Idioma: inglés
  • DOI: 10.33044/revuma.4032
  • Enlaces
  • Resumen
    • This paper studies the distribution function of the time of extinction of a subcritical epidemic, when a large enough proportion of the population has been immunized and/or the infectivity of the infectious individuals has been reduced, so that the effective reproduction number is less than one. We do that for a SIR/SEIR model, where infectious individuals have an infection-age-dependent infectivity, as in the model introduced in Kermack and McKendrick's seminal 1927 paper. Our main conclusion is that simplifying the model as an ODE SIR model, as it is largely done in the epidemics literature, introduces a bias toward shorter extinction time.

  • Referencias bibliográficas
    • K. B. Athreya and P. E. Ney, Branching processes, Die Grundlehren der mathematischen Wissenschaften, Band 196, Springer-Verlag, New York-Heidelberg,...
    • P. Billingsley, Convergence of probability measures, second ed., Wiley Series in Probability and Statistics, Wiley, New York, 1999. DOI ...
    • T. Britton and E. Pardoux (eds.), Stochastic epidemic models with inference, Lecture Notes in Mathematics 2255, Springer, Cham, 2019. DOI...
    • K. S. Crump and C. J. Mode, A general age-dependent branching process. I, J. Math. Anal. Appl. 24 (1968), 494–508. DOI MR Zbl
    • K. S. Crump and C. J. Mode, A general age-dependent branching process. II, J. Math. Anal. Appl. 25 (1969), 8–17. DOI MR Zbl
    • R. Forien, G. Pang, and E. Pardoux, Epidemic models with varying infectivity, SIAM J. Appl. Math. 81 no. 5 (2021), 1893–1930. DOI MR Zbl
    • R. Forien, G. Pang, and E. Pardoux, Multi-patch multi-group epidemic model with varying infectivity, Probab. Uncertain. Quant. Risk 7 no....
    • Q. Griette, Z. Liu, P. Magal, and R. N. Thompson, Real-time prediction of the end of an epidemic wave: COVID-19 in China as a case-study,...
    • X. He, E. H. Y. Lau, P. Wu, X. Deng, J. Wang, X. Hao, Y. C. Lau, J. Y. Wong, Y. Guan, X. Tan, X. Mo, Y. Chen, B. Liao, W. Chen, F. Hu, Q....
    • J. Cowling, F. Li, and G. M. Leung, Temporal dynamics in viral shedding and transmissibility of COVID-19, Nat. Med. 26 (2020), 672–675. DOI
    • Y. Iwasa, M. A. Nowak, and F. Michor, Evolution of resistance during clonal expansion, Genetics 172 no. 4 (2006), 2557–2566. DOI
    • W. O. Kermack and A. G. McKendrick, A contribution to the mathematical theory of epidemics, Proc. Roy. Soc. London Ser. A 115 (1927), 700–721....
    • E. Pardoux, Markov processes and applications: algorithms, networks, genome and finance, Wiley Series in Probability and Statistics, John...

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno