Ir al conteni
d
o
B
uscar
R
evistas
T
esis
Libr
o
antiguo
Co
n
gresos
A
u
tores
Ayuda
Cambiar idioma
Idioma
català
Deutsch
English
español
euskara
français
galego
italiano
português
română
Cambiar
Decidable objects and molecular toposes
Matías Menni
[1]
[1]
Universidad Nacional de La Plata
Universidad Nacional de La Plata
Argentina
Localización:
Revista de la Unión Matemática Argentina
,
ISSN
0041-6932,
ISSN-e
1669-9637,
Vol. 67, Nº. 2, 2024
,
págs.
397-415
Idioma:
inglés
DOI
:
10.33044/revuma.3427
Enlaces
Texto completo
Referencias bibliográficas
M. Artin, A. Grothendieck, and J. L. Verdier, Théorie des topos et cohomologie étale des schémas (SGA 4), Lecture Notes in Math. 269–270,...
M. Barr and R. Paré, Molecular toposes, J. Pure Appl. Algebra 17 no. 2 (1980), 127–152. DOI MR Zbl
F. Borceux and B. J. Day, On product-preserving Kan extensions, Bull. Austral. Math. Soc. 17 no. 2 (1977), 247–255. DOI MR Zbl
A. Carboni and G. Janelidze, Decidable (= separable) objects and morphisms in lextensive categories, J. Pure Appl. Algebra 110 no. 3 (1996),...
A. Carboni, G. Janelidze, G. M. Kelly, and R. Paré, On localization and stabilization for factorization systems, Appl. Categ. Structures 5...
A. Carboni and S. Mantovani, An elementary characterization of categories of separated objects, J. Pure Appl. Algebra 89 no. 1-2 (1993), 63–92....
M. Demazure and P. Gabriel, Groupes algébriques. Tome I: Géométrie algébrique, généralités, groupes commutatifs, Masson, Paris; North-Holland,...
P. Gabriel and M. Zisman, Calculus of fractions and homotopy theory, Ergebnisse der Mathematik und ihrer Grenzgebiete 35, Springer-Verlag,...
R. Garner and T. Streicher, An essential local geometric morphism which is not locally connected though its inverse image part is an exponential...
R. Gates, On generic separable objects, Theory Appl. Categ. 4 (1998), 208–248. MR Zbl
J. W. Gray, Fibred and cofibred categories, in Proc. Conf. Categorical Algebra (La Jolla, Calif., 1965), Springer-Verlag, New York, 1966,...
J. Hemelaer, Some toposes over which essential implies locally connected, Cah. Topol. Géom. Différ. Catég. 63 no. 4 (2022), 425–451. MR ...
J. Hemelaer and M. Rogers, An essential, hyperconnected, local geometric morphism that is not locally connected, Appl. Categ. Structures 29...
P. T. Johnstone, Sketches of an elephant: a topos theory compendium. Vols. 1–2, Oxford Logic Guides 43–44, The Clarendon Press, Oxford University...
P. T. Johnstone, Remarks on punctual local connectedness, Theory Appl. Categ. 25 (2011), 51–63. MR Zbl
A. Kock, Synthetic differential geometry, second ed., London Mathematical Society Lecture Note Series 333, Cambridge University Press, Cambridge,...
F. W. Lawvere, Some thoughts on the future of category theory, in Category Theory (Como, 1990), Lecture Notes in Math. 1488, Springer, Berlin,...
F. W. Lawvere, Axiomatic cohesion, Theory Appl. Categ. 19 (2007), 41–49. MR Zbl
F. W. Lawvere, Core varieties, extensivity, and rig geometry, Theory Appl. Categ. 20 (2008), 497–503. MR Zbl
F. W. Lawvere and M. Menni, Internal choice holds in the discrete part of any cohesive topos satisfying stable connected codiscreteness, Theory...
S. Mac Lane and I. Moerdijk, Sheaves in geometry and logic: a first introduction to topos theory, Universitext, Springer-Verlag, New York,...
F. Marmolejo and M. Menni, The canonical intensive quality of a cohesive topos, Theory Appl. Categ. 36 (2021), 250–279. MR Zbl
M. Menni, Sufficient cohesion over atomic toposes, Cah. Topol. Géom. Différ. Catég. 55 no. 2 (2014), 113–149. MR Zbl
M. Menni, The unity and identity of decidable objects and double-negation sheaves, J. Symb. Log. 83 no. 4 (2018), 1667–1679. DOI MR Zbl
M. Menni, A basis theorem for 2-rigs and rig geometry, Cah. Topol. Géom. Différ. Catég. 62 no. 4 (2021), 451–490. MR Zbl
M. Menni, The hyperconnected maps that are local, J. Pure Appl. Algebra 225 no. 5 (2021), Paper No. 106596, 14 pp. DOI MR Zbl
M. Menni, Maps with discrete fibers and the origin of basepoints, Appl. Categ. Structures 30 no. 5 (2022), 991–1015. DOI MR Zbl
R. Street, Fibrations in bicategories, Cah. Topol. Géom. Différ. 21 no. 2 (1980), 111–160. MR Zbl
D. Yetter, On right adjoints to exponential functors, J. Pure Appl. Algebra 45 no. 3 (1987), 287–304. DOI MR Zbl
Acceso de usuarios registrados
Identificarse
¿Olvidó su contraseña?
¿Es nuevo?
Regístrese
Ventajas de registrarse
Mi Documat
S
elección
Opciones de artículo
Seleccionado
Opciones de compartir
Opciones de entorno
Sugerencia / Errata
©
2008-2025
Fundación Dialnet
· Todos los derechos reservados
Accesibilidad
Aviso Legal
Coordinado por:
I
nicio
B
uscar
R
evistas
T
esis
Libr
o
antiguo
A
u
tores
Ayuda
R
e
gistrarse
¿En qué podemos ayudarle?
×
Buscar en la ayuda
Buscar