Ir al contenido

Documat


Decidable objects and molecular toposes

  • Matías Menni [1]
    1. [1] Universidad Nacional de La Plata

      Universidad Nacional de La Plata

      Argentina

  • Localización: Revista de la Unión Matemática Argentina, ISSN 0041-6932, ISSN-e 1669-9637, Vol. 67, Nº. 2, 2024, págs. 397-415
  • Idioma: inglés
  • DOI: 10.33044/revuma.3427
  • Enlaces
  • Referencias bibliográficas
    • M. Artin, A. Grothendieck, and J. L. Verdier, Théorie des topos et cohomologie étale des schémas (SGA 4), Lecture Notes in Math. 269–270,...
    • M. Barr and R. Paré, Molecular toposes, J. Pure Appl. Algebra 17 no. 2 (1980), 127–152. DOI MR Zbl
    • F. Borceux and B. J. Day, On product-preserving Kan extensions, Bull. Austral. Math. Soc. 17 no. 2 (1977), 247–255. DOI MR Zbl
    • A. Carboni and G. Janelidze, Decidable (= separable) objects and morphisms in lextensive categories, J. Pure Appl. Algebra 110 no. 3 (1996),...
    • A. Carboni, G. Janelidze, G. M. Kelly, and R. Paré, On localization and stabilization for factorization systems, Appl. Categ. Structures 5...
    • A. Carboni and S. Mantovani, An elementary characterization of categories of separated objects, J. Pure Appl. Algebra 89 no. 1-2 (1993), 63–92....
    • M. Demazure and P. Gabriel, Groupes algébriques. Tome I: Géométrie algébrique, généralités, groupes commutatifs, Masson, Paris; North-Holland,...
    • P. Gabriel and M. Zisman, Calculus of fractions and homotopy theory, Ergebnisse der Mathematik und ihrer Grenzgebiete 35, Springer-Verlag,...
    • R. Garner and T. Streicher, An essential local geometric morphism which is not locally connected though its inverse image part is an exponential...
    • R. Gates, On generic separable objects, Theory Appl. Categ. 4 (1998), 208–248. MR Zbl
    • J. W. Gray, Fibred and cofibred categories, in Proc. Conf. Categorical Algebra (La Jolla, Calif., 1965), Springer-Verlag, New York, 1966,...
    • J. Hemelaer, Some toposes over which essential implies locally connected, Cah. Topol. Géom. Différ. Catég. 63 no. 4 (2022), 425–451. MR ...
    • J. Hemelaer and M. Rogers, An essential, hyperconnected, local geometric morphism that is not locally connected, Appl. Categ. Structures 29...
    • P. T. Johnstone, Sketches of an elephant: a topos theory compendium. Vols. 1–2, Oxford Logic Guides 43–44, The Clarendon Press, Oxford University...
    • P. T. Johnstone, Remarks on punctual local connectedness, Theory Appl. Categ. 25 (2011), 51–63. MR Zbl
    • A. Kock, Synthetic differential geometry, second ed., London Mathematical Society Lecture Note Series 333, Cambridge University Press, Cambridge,...
    • F. W. Lawvere, Some thoughts on the future of category theory, in Category Theory (Como, 1990), Lecture Notes in Math. 1488, Springer, Berlin,...
    • F. W. Lawvere, Axiomatic cohesion, Theory Appl. Categ. 19 (2007), 41–49. MR Zbl
    • F. W. Lawvere, Core varieties, extensivity, and rig geometry, Theory Appl. Categ. 20 (2008), 497–503. MR Zbl
    • F. W. Lawvere and M. Menni, Internal choice holds in the discrete part of any cohesive topos satisfying stable connected codiscreteness, Theory...
    • S. Mac Lane and I. Moerdijk, Sheaves in geometry and logic: a first introduction to topos theory, Universitext, Springer-Verlag, New York,...
    • F. Marmolejo and M. Menni, The canonical intensive quality of a cohesive topos, Theory Appl. Categ. 36 (2021), 250–279. MR Zbl
    • M. Menni, Sufficient cohesion over atomic toposes, Cah. Topol. Géom. Différ. Catég. 55 no. 2 (2014), 113–149. MR Zbl
    • M. Menni, The unity and identity of decidable objects and double-negation sheaves, J. Symb. Log. 83 no. 4 (2018), 1667–1679. DOI MR Zbl
    • M. Menni, A basis theorem for 2-rigs and rig geometry, Cah. Topol. Géom. Différ. Catég. 62 no. 4 (2021), 451–490. MR Zbl
    • M. Menni, The hyperconnected maps that are local, J. Pure Appl. Algebra 225 no. 5 (2021), Paper No. 106596, 14 pp. DOI MR Zbl
    • M. Menni, Maps with discrete fibers and the origin of basepoints, Appl. Categ. Structures 30 no. 5 (2022), 991–1015. DOI MR Zbl
    • R. Street, Fibrations in bicategories, Cah. Topol. Géom. Différ. 21 no. 2 (1980), 111–160. MR Zbl
    • D. Yetter, On right adjoints to exponential functors, J. Pure Appl. Algebra 45 no. 3 (1987), 287–304. DOI MR Zbl

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno