Ir al contenido

Documat


On the Student-t Mixture Inverse Gaussian Modelwith an Application to Protein Production

  • ANTONIO SANHUEZA [1] ; VÍCTOR LEIVA [3] ; LILIANA LÓPEZ-KLEINE [2] Árbol académico
    1. [1] Universidad de La Frontera

      Universidad de La Frontera

      Temuco, Chile

    2. [2] Universidad Nacional de Colombia

      Universidad Nacional de Colombia

      Colombia

    3. [3] Universidad de Valpara\'{\i}so Departamento de Estad\'{\i}stica, CIMFAV
  • Localización: Revista Colombiana de Estadística, ISSN-e 2389-8976, ISSN 0120-1751, Vol. 34, Nº. 1, 2011, págs. 177-195
  • Idioma: inglés
  • Títulos paralelos:
    • Sobre el modelo gaussiano inverso mezclado t-Student y una aplicaci\'{o}n a producci\'{o}n de prote\'{i}nas
  • Enlaces
  • Resumen
    • español

      En este art\iculo, introducimos un modelo Gaussiano inverso (MIG) mezclado basado en la distribuci\on t-Student y lo aplicamos a la producci\on de prote\inas basada en bacterias para la industria de alimentos. Este modelo es especialmente \util para describir datos que siguen una distribuci\on con sesgo positivo ya que permite acomodar observaciones at\ipicas de mejor forma que su versión cl\asica. Espec{i}ficamente, presentamos una caracterizaci\on de la distribución MIG-t y realizamos un an\alisis de confiabilidad de esta distribuci\on centrado principalmente en la tasa de fallas. También, discutimos el m\etodo de verosimilitud m\axima, el cual proporciona en este caso estimaciones robustas de los par\ametros del modelo. Con el fin de evaluar la influencia potencial de observaciones at\ipicas, proponemos un an\alisis de diagn\ostico para la distribuci\on. Finalmente, aplicamos los resultados obtenidos al análisis de datos nuevos de producci\on de prote\ina basada en bacterias utilizada en la industria de alimentos y comparamos estadísticamente dos tipos de bacterias productoras usando la prueba de raz\on de verosimilitudes basada en el modelo MIG-t como una metodolog\ia alternativa a los procedimientos disponibles a la fecha. Este punto es muy importante, ya que la evaluaci\on de producci\on de prote\inas usando dos construcciones distintas permite a los investigadores escoger el tipo m\as productivo antes de proceder al cultivo industrial a gran escala.

    • English

      In this article, we introduce a mixture inverse Gaussian (MIG) model based on the Student-t distribution and apply it to bacterium-based protein production for food industry. This model is mainly useful to describe data that follow positively skewed distributions and accommodate atypical observations in a better way than its classical version. Specifically, we present a characterization of the MIG-t distribution. In addition, we carry out a hazard analysis of this distribution centered mainly on its hazard rate. Furthermore, we discuss the maximum likelihood method, which produces--in this case--robust parameter estimates. Moreover, to evaluate the potential influence of atypical observations, we produce a diagnostic analysis for the model. Finally, we apply the obtained results to novel bacterium-based protein production data and statistically compare two types of protein producers using the likelihood ratio test based on the MIG-t model as an alternative methodology to the procedures available until now. This fact is very important, since the evaluation of protein production using both constructions allows practitioners to choose the most productive one before the bacterial culture is scaled to an industrial level.

  • Referencias bibliográficas
    • Arnold, B. C.,Balakrishnan, N.,Nagaraja, H. N.. (1992). A First Course in Order Statistics. John Wiley and Sons.
    • Balakrishnan, N.,Leiva, V.,Sanhueza, A.,Cabrera, E.. (2009). `Mixture inverse Gaussian distribution and its transformations, moments and...
    • Byrd, R. H.,Lu, P.,Nocedal, J.,Zhu, C.. (1995). `A limited memory algorithm for bound constrained optimization´. SIAM Journal on Scientific...
    • Chhikara, R. S.,Folks, J. L.. (1989). The Inverse Gaussian Distribution. Marcel Dekker.
    • Cook, R. D.. (1986). `Assessment of local influence (with discussion)´. Journal of The Royal Statistical Society Series B-Statistical...
    • Cook, R. D.,Weisberg, S.. (1982). Residuals and Influence in Regression. Chapman & Hall.
    • Efron, B.,Hinkley, D.. (1978). `Assessing the accuracy of the maximum likelihood estimator: Observed vs. expected Fisher information´....
    • Folks, J. L.. (2007). `The Encyclopedia of Statistical Sciences´. John Wiley & Sons.
    • Gupta, R. C.,Akman, H. O.. (1995). `On the reliability studies of the weighted inverse Gaussian model´. Journal of Statistical Planning...
    • Gupta, R. C.,Kirmani, S.. (1990). `The role of weighted distributions in stochastic modeling´. Communications in Statistics: Theory and...
    • Johnson, N. L.,Kotz, S.,Balakrishnan, N.. (1994). Continuous Univariate Distributions. John Wiley and Sons.
    • Johnson, N. L.,Kotz, S.,Balakrishnan, N.. (1995). Continuous Univariate Distributions. John Wiley and Sons.
    • Jorgensen, B.. (1982). Statistical Properties of the Generalized Inverse Gaussian Distribution. Springer.
    • Jorgensen, B.,Seshadri, V.,Whitmore, G.. (1991). `On the mixture of the inverse Gaussian distribution with its complementary reciprocal´....
    • Kotz, S.,Leiva, V.,Sanhueza, A.. (2010). `Two new mixture models related to the inverse Gaussian distribution´. Methodology and Computing...
    • Lange, K. L.,Little, J. A.,Taylor, M. G. J.. (1989). `Robust statistical modeling using the t distribution´. Journal of the American Statistical...
    • Le-Loir, Y.,Nouaille, S.,Commissaire, J.,Bretigny, L.,Gruss, A.,Langella, P.. (2001). `Signal peptide and propeptide optimization for...
    • Leiva, V.,Riquelme, M.,Balakrishnan, N.,Sanhueza, A.. (2008). `Lifetime analysis based on the generalized Birnbaum-Saunders distribution´....
    • Leiva, V.,Sanhueza, A.,Angulo, J. M.. (2009). `A length-biased version of the Birnbaum-Saunders distribution with application in water...
    • Leiva, V.,Sanhueza, A.,Sen, P. K.,Araneda, N.. (2010). `M-procedures in the general multivariate nonlinear regression model´. Pakistan...
    • Lucas, A.. (1997). `Robustness of the student t based m-estimator´. Communications in Statistics: Theory and Methods. 26. 1165-1182
    • Marshall, A. W.,Olkin, I.. (2007). Life Distributions. Springer Verlag.
    • McLachlan, G. J.,Peel, D.. (2000). Finite Mixture Models. John Wiley and Sons.
    • Montgomery, D. C.,Peck, E. A.,Vining, G. G.. (2001). Introduction to Linear Regression Analysis. John Wiley and Sons.
    • Patil, G. P.. (2002). `Encyclopedia of Environmetrics´. John Wiley & Sons.
    • R Development Core Team. (2009). R: A language and environment for statistical computing. R Foundation for Statistical Computing. Vienna.
    • Sanhueza, A.,Sen, P. K.,Leiva, V.. (2009). `A robust procedure in nonlinear models for repeated measurements´. Communications in Statistics:...
    • Saunders, S. C.. (2007). Reliability, Life Testing and Prediction of Services Lives. Springer.
    • Schrodinger, E.. (1915). `Zur theorie der fall-und steigversucheand teilchen mit brownscher bewegung´. Physikalische Zeitschrift. 16....
    • Seshadri, V.. (1993). The Inverse Gaussian Distribution: A Case Study in Exponential Families. Clarendon Press.
    • Seshadri, V.. (1999). The Inverse Gaussian Distribution: Statistical Theory and Applications. Springer.
    • Simoes-Barbosa, A.,Abreu, H.,Silva-Neto, A.,Gruss, A.,Langella, P.. (2004). `A food-grade delivery system for lactococcus lactis and evaluation...
    • Tweedie, M. C. K.. (1957). `Statistical properties of the inverse Gaussian distribution - I´. Annals of Mathematics Statistical. 28. 362-377
    • Wald, A.. (1947). Sequential Analysis. John Wiley and Sons.
Los metadatos del artículo han sido obtenidos de SciELO Colombia

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno