Ir al contenido

Documat


A Bayesian Analysis in the Presence of Covariates for Multivariate Survival Data: An example of Application

  • CARLOS APARECIDO SANTOS [1] ; JORGE ALBERTO ACHCAR [2]
    1. [1] Universidade Estadual de Maringá

      Universidade Estadual de Maringá

      Brasil

    2. [2] Universidade de São Paulo

      Universidade de São Paulo

      Brasil

  • Localización: Revista Colombiana de Estadística, ISSN-e 2389-8976, ISSN 0120-1751, Vol. 34, Nº. 1, 2011, págs. 111-131
  • Idioma: inglés
  • Títulos paralelos:
    • Análisis bayesiano en presencia de covariables para datos de sobrevivencia multivariados: un ejemplo de aplicación
  • Enlaces
  • Resumen
    • español

      En este artículo, se introduce un análisis bayesiano para datos multivariados de sobrevivencia en presencia de un vector de covariables y observaciones censuradas. Diferentes "fragilidades" o variables latentes son consideradas para capturar la correlación entre los tiempos de sobrevivencia para un mismo individuo. Asumimos distribuciones Weibull o Gamma generalizadas considerando datos de tiempo de vida a derecha. Desarrollamos el análisis bayesiano usando métodos Markov Chain Monte Carlo (MCMC).

    • English

      In this paper, we introduce a Bayesian analysis for survival multivariate data in the presence of a covariate vector and censored observations. Different "frailties" or latent variables are considered to capture the correlation among the survival times for the same individual. We assume Weibull or generalized Gamma distributions considering right censored lifetime data. We develop the Bayesian analysis using Markov Chain Monte Carlo (MCMC) methods.

  • Referencias bibliográficas
    • Chib, S.,Greenberg, E.. (1995). `Understanding the Metropolis-Hastings algorithm´. The American Statistician. 327-335
    • Clayton, D.. (1991). `A Monte Carlo Method for Bayesian inference in frailty models´. Biometrics. 467-485
    • Clayton, D.,Cuzick, J.. (1985). `Multivariate generalizations of the proportional hazards model´. Journal of the Royal Statistical Society....
    • Cox, D. R.. (1972). `Regression models and life tables´. Journal of the Royal Statistical Society. 187-220
    • Cox, D. R.,Oakes, D.. (1984). Analysis of Survival Data. Chapman & Hall.
    • Gelfand, A. E.,Smith, A. F. M.. (1990). `Sampling based approaches to calculating marginal densities´. Journal of the American Statistical...
    • Gelman, A.,Rubin, D. B.. (1992). `Inference from iterative simulation using multiple sequences (with discussion)´. Statistical Science....
    • Hager, H. W.,Bain, L. J.. (1970). `Inferential procedures for the generalized gamma distribution´. Journal of the American Statistical...
    • Kalbfleisch, J. D.. (1978). `Nonparametric Bayesian analysis of survival time data´. Journal of the Royal Statistical Society. 214-221
    • McGilchrist, C. A.,Aisbett, C. W.. (1991). `Regression with frailty in survival analysis´. Biometrics. 461-466
    • Oakes, D.. (1986). `Semiparametric inference in a model for association in bivariate survival data´. Biometrika. 73. 353-361
    • Oakes, D.. (1989). `Bivariate survival models induced by frailties´. Journal of the American Statistical Association. 84. 487-493
    • Parr, V. B.,Webster, J. T.. (1965). `A method for discriminating between failure density functions used in reliability predictions´. Technometrics....
    • Shih, J. A.,Louis, T. A.. (1992). Models and analysis for multivariate failure time data. Division of Biostatistics.
    • Spiegelhalter, D. J.,Best, N. G.,Carlin, B. P.,Van der Linde, A.. (2002). `Bayesian measures of model complexity and fit (with discussion)´....
    • Spiegelhalter, D. J.,Thomas, A.,Best, N. G.,Lunn, D.. (2003). WinBugs version 1.4 user manual. Institute of Public Health and Department of...
    • Stacy, E. W.,Mihram, G. A.. (1965). `Parameter estimation for a generalized gamma distribution´. Technometrics. 349-358
    • Weibull, W.. (1951). `A statistical distribution function of wide applicability´. Journal of Applied Mechanics. 18. 292-297
Los metadatos del artículo han sido obtenidos de SciELO Colombia

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno