Ir al contenido

Documat


Inference for the Weibull Distribution Based on Fuzzy Data

  • ABBAS PAK [1] ; GHOLAM ALI PARHAM [1] ; MANSOUR SARAJ [1]
    1. [1] Shahid Chamran University of Ahvaz

      Shahid Chamran University of Ahvaz

      Irán

  • Localización: Revista Colombiana de Estadística, ISSN-e 2389-8976, ISSN 0120-1751, Vol. 36, Nº. 2, 2013, págs. 337-356
  • Idioma: inglés
  • Títulos paralelos:
    • Inferencia para la distribución Weibull basada endatos difusos
  • Enlaces
  • Resumen
    • español

      Los procedimientos clásicos de estimación para los parámetros de la distribución Weibull se encuentran basados en datos precisos. Se asume usualmente que los datos observados son números reales precisos. Sin embargo, algunos datos recolectados podrían ser imprecisos y ser representados en la forma de números difusos. Por lo tanto, es necesario generalizar los métodos de estimación estadísticos clásicos de números reales a números difusos. En este artículo, diferentes métodos de estimación son discutidos para los parámetros de la distribución Weibull cuando los datos disponibles están en la forma de números difusos. Estos incluyen la estimación por máxima verosimilitud, la estimación Bayesiana y el método de momentos. Los procedimientos de estimación se discuten en detalle y se comparan vía simulaciones de Monte Carlo en términos de sesgos promedios y errores cuadráticos medios.

    • English

      Classical estimation procedures for the parameters of Weibull distribution are based on precise data. It is usually assumed that observed data are precise real numbers. However, some collected data might be imprecise and are represented in the form of fuzzy numbers. Thus, it is necessary to generalize classical statistical estimation methods for real numbers to fuzzy numbers. In this paper, different methods of estimation are discussed for the parameters of Weibull distribution when the available data are in the form of fuzzy numbers. They include the maximum likelihood estimation, Bayesian estimation and method of moments. The estimation procedures are discussed in details and compared via Monte Carlo simulations in terms of their average biases and mean squared errors. Finally, a real data set taken from a light emitting diodes manufacturing process is investigated to illustrate the applicability of the proposed methods.

  • Referencias bibliográficas
    • Ageel, M. I.. (2002). 'A novel means of estimating quantiles for 2-parameter Weibull distribution under the right random censoring model'....
    • Al-Baidhani, P. A.,Sinclair, C.. (1987). 'Comparison of methods of estimation of parameters of the Weibull distribution'. Communications...
    • Balakrishnan, N.,Kateri, M.. (2008). 'On the maximum likelihood estimation of parameters of Weibull distribution based on complete and...
    • Balakrishnan, N.,Mitra, D.. (2012). 'Left truncated and right censored Weibull data and likelihood inference with an illustration'....
    • Banerjee, A.,Kundu, D.. (2012). 'Inference based on type-II hybrid censored data from a Weibull distribution'. IEEE Transactions on...
    • Denoeux, T.. (2011). 'Maximum likelihood estimation from fuzzy data using the EM algorithm'. Fuzzy Sets and Systems. 183. 72-91
    • Dubois, D.,Prade, H.. (1980). Fuzzy Sets and Systems: Theory and Applications. Academic Press.
    • Gertner, G. Z.,Zhu, H.. (1996). 'Bayesian estimation in forest surveys when samples or prior information are fuzzy'. Fuzzy Sets and...
    • Gertner, G. Z.,Zhu, H.. (1996). 'Bayesian estimation in forest surveys when samples or prior information are fuzzy'. Fuzzy Sets and...
    • Helu, A.,Abu-Salih, M.,Alkam, O.. (2010). 'Bayes estimation of Weibull distribution parameters using ranked set sampling'. Communications...
    • Joarder, A.,Krishna, H.,Kundu, D.. (2011). 'Inferences on Weibull parameters with conventional type-I censoring'. Computational Statistics...
    • Lin, C.,Chou, C.,Huang, Y.. (2012). 'Inference for the Weibull distribution with progressive hybrid censoring'. Computational Statistics...
    • Marks, N. B.. (2005). 'Estimation of Weibull parameters from common percentiles'. Journal of Applied Statistics. 32. 17-24
    • Nandi, S.,Dewan, I.. (2010). 'An EM algorithm for estimating the parameters of bivariate Weibull distribution under random censoring'....
    • Ng, H. K. T.,Wang, Z.. (2009). 'Statistical estimation for the parameters of Weibull distribution based on progressively type-I interval...
    • Press, S. J.. (2001). The Subjectivity of Scientists and the Bayesian Approach. Wiley.
    • Qiao, O.,Tsokos, C. P.. (1994). 'Parameter estimation of the Weibull probability distribution'. Mathematics and Computers in Simulation....
    • (2011). R Development Core Team, R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing. Vienna.
    • Singpurwalla, N. D.,Booker, J. M.. (2004). 'Membership functions and probability measures of fuzzy sets'. Journal of the American...
    • Tan, Z.. (2009). 'A new approach to MLE of Weibull distribution with interval data'. Reliability Engineering and System Safety. 94....
    • Tierney, L.,Kadane, J. B.. (1986). 'Accurate approximations for posterior moments and marginal densities'. Journal of the American...
    • Watkins, A. J.. (1994). 'On maximum likelihood estimation for the two parameter Weibull distribution'. Microelectronics Reliability....
    • Zadeh, L. A.. (1968). 'Probability measures of fuzzy events'. Journal of Mathematical Analysis and Applications. 10. 421-427
Los metadatos del artículo han sido obtenidos de SciELO Colombia

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno