Zawar Hussain, Ejaz Ali Shah, Javid Shabbir, Muhammad Riaz
La técnica de conteo de ítems (ICT, por sus siglas en inglés) es útil para estimar la proporción de personas que poseen atributos que pueden tener algún grado de estigmatización mediante el uso de un método de preguntas indirectas. Una ICT mejorada ha sido propuesta recientemente en la literatura bajo la inferencia clásica (la cual no requiere dos submuestras y libre de la necesidad de encontrartamaños de muestra óptimos para cada una de ellas como sucede en la ICT usual). Esta ICT mejorada se desempeña mejor que la ICT usual y que el método de Respuesta Aleatorizada (RR, por sus siglas en inglés) de Warner. Este artículo extiende su estudio bajo una visión Bayesiana usando diferentes a priori con el fin de derivar distribuciones, medias y varianzas a posteriori.Las medias y varianzas a posteriori son comparadas con el fin de estudiar cuál a priori es más útil en mejorar la técnica de conteo de ítems. Se observa que a priori simples y Beta elicitadas son las mejores escogencias (en términos dela varianza mínima) dependiendo del tamaño de muestra, el número de ítems y la suma de la respuesta. También, la estimación bayesiana proporciona estimadores relativamente más precisas que la estimación ML.
Item Count Technique (ICT) serves the purpose of estimating the proportion of the people with stigmatizing attributes using the indirect questioning method. An improved ICT has been recently proposed in the literature (not requiring two subsamples and hence free from finding optimum subsample sizes unlike the usual ICT) in a classical framework that performs better than the usual ICT and the Warner method of Randomized Response (RR) technique. This study extends the scope of this recently proposed ICT in a Bayesian framework using different priors in order to derive posterior distributions, posterior means and posterior variances. The posterior means and variances are compared in order to study which prior is more helpful in updating the item count technique. Moreover, we have compared the Proposed Bayesian estimation with Maximum Likelihood (ML) estimation. We have observed that simple and elicited Beta priors are superior choices (in terms of minimum variance), depending on the sample size, number of items and the sum of responses. Also, the Bayesian estimation provides relatively more precise estimators than the ML Estimation.
© 2008-2025 Fundación Dialnet · Todos los derechos reservados