Ir al contenido

Documat


Existence and Multiplicity of Blow-Up Profiles for a Quasilinear Diffusion Equation with Source

  • Razvan Gabriel Iagar [1] ; Ariel Sánchez [1]
    1. [1] Universidad Rey Juan Carlos

      Universidad Rey Juan Carlos

      Madrid, España

  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 24, Nº 1, 2025
  • Idioma: inglés
  • Enlaces
  • Resumen
    • We classify radially symmetric self-similar solutions presenting finite time blow-up to the quasilinear diffusion equation with weighted source ut = um + |x| σ u p, posed for (x, t) ∈ RN × (0, T ), T > 0, in dimension N ≥ 1 and in the range of exponents −2 <σ < ∞, 1 < m < p < ps(σ ), where ps(σ ) = m(N+2σ+2) N−2 , N ≥ 3, +∞, N ∈ {1, 2}, is the renowned Sobolev critical exponent. The most interesting result is the multiplicity of two different types of self-similar solutions for p sufficiently close to m and σ sufficiently close to zero in dimension N ≥ 2, including solutions with dead-core profiles. For σ = 0, this answers in dimension N ≥ 2 a question still left open in Samarskii et al. (Blow-up in quasilinear parabolic problems. de Gruyter expositions in mathematics, W. de Gruyter, Berlin, 1995, Section IV.1.4, pp. 195–196), where only multiplicity in dimension N = 1 had been established. Besides this result, we also prove that, for any σ ∈ (−2, 0), N ≥ 1 and m < p < ps(σ ) existence of at least a self-similar blow-up solution is granted. In strong contrast with the previous results, given any N ≥ 1, σ ≥ σ∗ = (mN + 2)/(m − 1) and p ∈ (m, ps(σ )), non-existence of any radially symmetric self-similar solution is proved.

  • Referencias bibliográficas
    • 1. Andreucci, D., DiBenedetto, E.: On the Cauchy problem and initial traces for a class of evolution equations with strongly nonlinear sources,...
    • 2. Andreucci, D., Tedeev, A.F.: Universal bounds at the blow-up time for nonlinear parabolic equations. Adv. Differ. Equ. 10(1), 89–120 (2005)
    • 3. Aronson, D.G., van den Berg, J.B., Hulshof, J.: Parametric dependence of exponents and eigenvalues in focusing porous media flows. Eur....
    • 4. Bandle, C., Stakgold, I.: The formation of dead core on parabolic reaction–diffusion problems. Trans. Am. Math. Soc. 286(1), 275–293 (1984)
    • 5. Baras, P., Goldstein, J.: The heat equation with a singular potential. Trans. Am. Math. Soc. 284(1), 121–139 (1984)
    • 6. Baras, P., Kersner, R.: Local and global solvability of a class of semilinear parabolic equations. J. Differ. Equ. 68, 238–252 (1987)
    • 7. Ben Slimene, B.: Asymptotically self-similar global solutions for Hardy–Hénon parabolic systems. Differ. Equ. Appl. 11(4), 439–462 (2019)
    • 8. Ben Slimene, B., Tayachi, S., Weissler, F.B.: Well-posedness, global existence and large time behavior for Hardy–Hénon parabolic equations....
    • 9. Carr, J.: Applications of Centre Manifold Theory. Springer, New York (1981)
    • 10. Chikami, N., Ikeda, M., Taniguchi, K.: Well-posedness and global dynamics for the critical Hardy– Sobolev parabolic equation. Nonlinearity...
    • 11. Chikami, N., Ikeda, M., Taniguchi, K.: Optimal well-posedness and forward self-similar solution for the Hardy–Hénon parabolic equation...
    • 12. Dimova, M., Dimova, S., Vasilieva, D.: Numerical investigation of a new class of waves in an open nonlinear heat-conducting medium. Cent....
    • 13. Dimova, M., Dimova, S., Vasilieva, D.: Structures and waves in a nonlinear heat-conducting medium. Numerical solution of partial differential...
    • 14. Filippas, S., Tertikas, A.: On similarity solutions of a heat equation with a nonhomogeneous nonlinearity. J. Differ. Equ. 165(2), 468–492...
    • 15. Fujita, H.: On the blowing up of solutions of the Cauchy problem for ut = u + u1+α. J. Fac. Sci. Univ. Tokyo Sect. I(13),...
    • 16. Galaktionov, V.A., Vázquez, J.L.: Continuation of blowup solutions of nonlinear heat equations in several space dimensions. Commun. Pure...
    • 17. Guckenheimer, J., Holmes, P.: Nonlinear Oscillation, Dynamical Systems and Bifurcations of Vector Fields. Applied Mathematical Sciences,...
    • 18. Guo, J.-S., Ling, C.-T., Souplet, P.: Non-self-similar dead-core rate for the fast diffusion equation with strong absorption. Nonlinearity...
    • 19. Herrero, M.A., Velázquez, J.J.L.: Explosion des solutions des équations paraboliques semilinéaires supercritiques. C. R. Acad. Sci. Paris...
    • 20. Hisa, K., Takahashi, J.: Optimal singularities of initial data for solvability of the Hardy parabolic equation. J. Differ. Equ. 296, 822–848...
    • 21. Hulshof, J.: Similarity solutions of the porous medium equation with sign changes. J. Math. Anal. Appl. 157(1), 75–111 (1991)
    • 22. Iagar, R.G., Latorre, M., Sánchez, A.: Blow-up patterns for a reaction–diffusion equation with weighted reaction in general dimension....
    • 23. Iagar, R.G., Laurençot, P.: Non-existence of non-negative separate variable solutions to a porous medium equation with spatially dependent...
    • 24. Iagar, R.G., Laurençot, Ph., Sánchez, A.: Self-similar shrinking of supports and non-extinction for a nonlinear diffusion equation with...
    • 25. Iagar, R.G., Muñoz, A.I., Sánchez, A.: Self-similar solutions preventing finite time blow-up for reaction–diffusion equations with singular...
    • 26. Iagar, R. G., Muñoz, A. I., Sánchez, A.: Extinction and non-extinction profiles for the sub-critical fast diffusion equation with weighted...
    • 27. Iagar, R.G., Sánchez, A.: Blow up profiles for a reaction–diffusion equation with critical weighted reaction. Nonlinear Anal. 191, 111628...
    • 28. Iagar, R.G., Sánchez, A.: Blow up profiles for a quasilinear reaction–diffusion equation with weighted reaction. J. Differ. Equ. 272(1),...
    • 29. Iagar, R.G., Sánchez, A.: Separate variable blow-up patterns for a reaction–diffusion equation with critical weighted reaction. Nonlinear...
    • 30. Iagar, R. G., Sánchez, A.: Global solutions versus finite time blow-up for the fast diffusion equation with spatially inhomogeneous source....
    • 31. Iagar, R.G., Sánchez, A.: A special self-similar solution and existence of global solutions for a reaction– diffusion equation with Hardy...
    • 32. Iagar, R.G., Sánchez, A.: Existence of blow-up self-similar solutions for the supercritical quasilinear reaction–diffusion equation. Discrete...
    • 33. Lepin, L.A.: Self-similar solutions of a semilinear heat equation (Russian). Mat. Model. 2, 63–74 (1990)
    • 34. Matano, H., Merle, F.: Classification of type I and type II behaviors for a supercritical nonlinear heat equation. J. Funct. Anal. 256(4),...
    • 35. Matano, H.,Merle, F.: Threshold and generic type I behaviors for a supercritical nonlinear heat equation. J. Funct. Anal. 261(3), 716–748...
    • 36. Mukai, A., Seki, Y.: Refined construction of type II blow-up solutions for semilinear heat equations with Joseph–Lundgren supercritical...
    • 37. Perko, L.: Differential Equations and Dynamical Systems. Texts in Applied Mathematics, vol. 7, 3rd edn. Springer, New York (2001)
    • 38. Pinsky, R.G.: Existence and nonexistence of global solutions for ut = u + a(x)u p in Rd . J. Differ. Equ. 133(1), 152–177 (1997)
    • 39. Pinsky, R.G.: The behavior of the life span for solutions to ut = u + a(x)u p in Rd . J. Differ. Equ. 147(1), 30–57 (1998)
    • 40. Qi, Y.-W.: The critical exponents of parabolic equations and blow-up in RN . Proc. R. Soc. Edinb. Sect. A 128(1), 123–136 (1998)
    • 41. Quittner, P., Souplet, P.: Superlinear Parabolic Problems. Blow-Up, Global Existence and Steady States. Birkhauser Advanced Texts, Birkhauser,...
    • 42. Reyes, G., Vázquez, J.L.: The Cauchy problem for the inhomogeneous porous medium equation. Netw. Heterog. Media 1, 337–351 (2006)
    • 43. Samarskii, A.A., Galaktionov, V.A., Kurdyumov, S.P., Mikhailov, A.P.: Blow-Up in Quasilinear Parabolic Problems. de Gruyter Expositions...
    • 44. Seki, Y.: On exact dead core rates for a semilinear heat equation with strong absorption. Commun. Contemp. Math. 13(1), 1–52 (2011)
    • 45. Shilnikov, L.P., Shilnikov, A., Turaev, D., Chua, L.O.: Methods of Qualitative Theory in Nonlinear Dynamics. Part I. World Scientific,...
    • 46. Sijbrand, J.: Properties of center manifolds. Trans. Am. Math. Soc. 289(2), 431–469 (1985)
    • 47. Sotomayor, J.: Generic bifurcations of dynamical systems. In: Proceedings of a Symposium Held at University of Bahia, Salvador, Brasil,...
    • 48. Suzuki, R.: Existence and nonexistence of global solutions of quasilinear parabolic equations. J. Math. Soc. Jpn. 54(4), 747–792 (2002)
    • 49. Tayachi, S.: Uniqueness and non-uniqueness of solutions for critical Hardy–Hénon parabolic equations. J. Math. Anal. Appl. 488(1), 123976...
    • 50. van den Berg, J.B., Vandervorst, R.C.: Stable patterns for fourth-order parabolic equations. Duke Math. J. 115(3), 513–558 (2002)
    • 51. Vázquez, J.L.: The Porous Medium Equation. Mathematical Theory, Oxford Monographs in Mathematics. Oxford University Press, Oxford (2007)

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno