Ir al contenido

Documat


A Variational Principle of the Deformed Entropy

  • Hu Chen [1] ; Zhiming Li [2]
    1. [1] Sun Yat-sen University

      Sun Yat-sen University

      China

    2. [2] Northwest University

      Northwest University

      China

  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 24, Nº 1, 2025
  • Idioma: inglés
  • Enlaces
  • Resumen
    • We introduce the notions of packing entropy and local entropy with respect to the deformed metric. In particular, a variational principle between deformed packing entropy and deformed local entropy is established. Finally, we obtain an inequality of the deformed packing entropy with respect to the factor map, which extends Bowen’s classical result.

  • Referencias bibliográficas
    • 1. Bowen, R.: Entropy for group endomorphisms and homogeneous. Trans. Am. Math. Soc. 153, 401–414 (1971)
    • 2. Bowen, R.: Topological entropy for noncompact sets. Trans. Am. Math. Soc. 184, 125–136 (1973)
    • 3. Brin, M., Katok, A.: On local entropy. In: Geometric Dynamics, Rio de Janeiro, 1981, Lecture Notes in Math., vol. 1007, pp. 30–38. Springer,...
    • 4. Chen, H., Li, Z.: Scaled packing entropy for amenable group actions. Banach J. Math. Anal. 17, 50 (2023)
    • 5. Cheng, D., Li, Z.: Scaled pressure of dynamical systems. J. Differ. Equ. 342, 441–471 (2023)
    • 6. Dou, D., Zheng, D., Zhou, X.: Packing topological entropy for amenable group actions. Ergodic Theory Dyn Syst 1–35 (2023)
    • 7. Downarowicz, T.: Entropy in Dynamical Systems. Cambridge University Press, Cambridge (2011)
    • 8. Falconer, K.J.: Fractal Geometry. Mathematical Foundations and Applications, 2nd edn. Wiley, Hoboken (2003)
    • 9. Feng, D.J., Huang, W.: Variational principles for topological entropies of subsets. J. Funct. Anal. 263(8), 2228–2254 (2012)
    • 10. Gröger, M., Oertel-Jäger, T. H.: Some remarks on modified power entropy. In: Dynamics and numbers, Contemp. Math., vol. 669, pp. 105–122....
    • 11. Joyce, H., Preiss, D.: On the existence of subsets of finite positive packing measure. Mathematika 42, 15–24 (1995)
    • 12. Kawan, C.: Exponential state estimation, entropy and Lyapunov exponents. Syst. Control Lett. 113, 78–85 (2018)
    • 13. Liberzon, D., Mitra, S.: Entropy and minimal bit rates for state estimation and model detection. IEEE 247–256 (2016)
    • 14. Mattila, P.: Geometry of Sets and Measures in Euclidean Spaces. Cambridge University Press, Cambridge (1995)
    • 15. Oprocha, P., Zhang, G.H.: Dimensional entropy over sets and fibres. Nonlinearity 24(8), 2325–2346 (2011)
    • 16. Pesin, Y.B.: Dimension Theory in Dynamical Systems. University of Chicago Press, Chicago, IL, Contemporary Views and Applications (1997)
    • 17. Thieullen, P.: Généralisation du théorème de Pesin pour l’α-entropie, In: Lyapunov Exponents (Oberwolfach, 1990), 232–242, Lecture Notes...
    • 18. Thieullen, P.: Entropy and the Hausdorff dimension for infinite-dimensional dynamical systems. J. Dyn. Differ. Equ. 4(1), 127–159 (1992)
    • 19. Thieullen, P.: Fibres dynamiques. Entropie et dimension, Ann. Inst. H. Poincare´ Anal. Non Line´aire 9(2), 119–146 (1992)
    • 20. Zhao, C., Chen, E.C., Hong, X.C., Zhou, X.Y.: A formula of packing pressure of a factor map. Entropy 19(10), 526 (2017)
    • 21. Zhong, X.F., Chen, Z.J.: A variational principle for Bowen estimation entropy. Sci. Sin. Math. 51, 1213–1224 (2021). (in Chinese)

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno