Ir al contenido

Documat


Local Integrability and Linearizability for Three Dimensional Lotka–Volterra Cubic Systems

  • Aween Karim [1] ; Waleed Aziz [1] ; Azad Amen [2]
    1. [1] Salahaddin University-Erbil

      Salahaddin University-Erbil

      Irak

    2. [2] Duhok University, Salahaddin University-Erbil, Soran University,
  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 24, Nº 1, 2025
  • Idioma: inglés
  • Enlaces
  • Resumen
    • In this study, we investigate the integrability and linearizability problems of a family of cubic three-dimensional Lotka–Volterra systems with one zero eigenvalue, involving seventeen parameters. Necessary conditions on the parameters of the system for both integrability and linearizability are obtained by computing the resonant quantities using Gröbner bases and decomposing the variety of the ideal generated in the ring of polynomials of parameters of the system. The sufficiency of these conditions is also proven except that for a case, Case 32, of sufficiency has been left as conjectural. In particular, we used the Darboux method, the existence of a first integral with an inverse Jacobi multiplier, time reversibility, the properties of linearizable nodes in two dimensional systems and power series arguments to the third variable and some other techniques.

      Similar content being viewed by others

  • Referencias bibliográficas
    • 1. Arcet, B., Romanovski, V.G.: Integrability and linearizability of symmetric three-dimensional quadratic systems. Discrete Contin. Dyn....
    • 2. Aziz, W.: Integrability and linearizability problems of three dimensional Lotka-Volterra equations of rank-2. Qual. Theory Dyn. Syst. 18,...
    • 3. Aziz, W., Christopher, C.: Local integrability and linearizability of three-dimensional Lotka–Volterra systems. Appl. Math. Comput. 219,...
    • 4. Aziz, W., Christopher, C., Llibre, J., Pantazi, C.: Three-dimensional Lotka-Volterra systems with 3 : −1 : 2-resonance. Mediterr. J. Math....
    • 5. Busse, F.H.: Transition to turbulence via the statistical limit cycle route. In: Haken, H. (ed.) Chaos and Order in Nature, 11, pp. 36–44....
    • 6. Chen, X., Giné, J., Romanovski, V.G., Shafer, D.S.: The 1 : −q resonant center problem for certain cubic Lotka-Volterra systems. Appl....
    • 7. Dukari´c, M.: Qualitative studies of some polynomial systems of ordinary differential equations. Diss. Univerza v Mariboru (Slovenia)....
    • 8. Dukari´c, M., Ferˇcec, B., Giné, J.: The solution of the 1 : −3 resonant center problem in the quadratic case. Appl. Math. Comput. 237,...
    • 9. Dukari´c, M., Giné, J.: Integrability of Lotka-Volterra planar complex cubic systems. Int. J. Bifurcation Chaos. 26, 1650002 (2016). https://doi.org/10.1142/S0218127416500024
    • 10. Ferˇcec, B., Žulj, M., Mencinger, M.: On the integrability of persistent quadratic three-dimensional systems. Mathematics 12, 1338 (2024)....
    • 11. Ferˇcec, B., Giné, J., Mencinger, M., Oliveira, R.: The center problem for a 1 : −4 resonant quadratic system. J. Math. Anal. Appl. 420,...
    • 12. Fronville, A., Sadovski, A., Zóladek, H.: Solution of the 1 : −2 resonant center problem in the quadratic case. Fundam. Math. 157, 191–207...
    • 13. Giné, J., Kadyrsizova, Z., Liu, Y., Romanovski, V.G.: Linearizability conditions for Lotka-Volterra planar complex quartic systems having...
    • 14. Giné, J., Romanovski, V.G.: Integrability conditions for Lotka-Volterra planar complex quintic systems. Nonlinear Anal. Real World Appl....
    • 15. Giné, J., Romanovski, V.G.: Linearizability conditions for Lotka-Volterra planar complex cubic systems. J. Phys. A: Math. Theor. 42, 225206...
    • 16. Hering, R.H.: Oscillations in Lotka-Volterra systems of chemical reactions. J. Math. Chem. 5, 197–202 (1990). https://doi.org/10.1007/BF01166429
    • 17. Hu, Z., Han, M., Romanovski, V.G.: Local integrability of a family of three-dimensional quadratic systems. Physica D. 265, 78–86 (2013)....
    • 18. Hu, Z., Romanovski, V.G., Shafer, D.S.: 1 : −3 resonant centers on C2 with homogeneous cubic nonlinearities. Comput. Math. Appl. 56, 1927–1940...
    • 19. Lamb, W.E.: Theory of an optical maser. Phys. Rev. 134, A1429 (1964). https://doi.org/10.1103/ PhysRev.134.A1429
    • 20. Laval, G., Pellat, R.: Plasma phys. (Les Houches). Proc. Summer School of Theoretical Physics, Gordon and Breach, New York (1975)
    • 21. Li, F., Jin, Y., Tian, Y., Yu, P.: Integrability and linearizability of cubic Z2 systems with non-resonant singular points. J. Differ....
    • 22. Li, F., Liu, Y., Yu, P., Wang, J.: Complex integrability and linearizability of cubic Z2-equivariant systems with two 1 : q resonant singular...
    • 23. Llibre, J., Pantazi, C., Walcher, S.: First integrals of local analytic differential systems. Bull. Sci. Math. 136, 342–359 (2012). https://doi.org/10.1016/j.bulsci.2011.10.003
    • 24. May, R.M.: Stab. complex. model ecosyst. Princeton University Press, Princeton (1973)
    • 25. Romanovski, V.G., Shafer, D.S.: Complete integrability and time-reversibility of some 3-dim systems. Appl. Math. Lett. 51, 27–33 (2016)....
    • 26. Romanovski, V.G., Shafer, D.S.: On the center problem for p : −q resonant polynomial vector fields. Bull. Belg. Math. Soc. Simon Stevin....
    • 27. Romanovski, V.G., Shafer, D.S.: The center and cyclicity problems: a computational algebra approach. Springer Science & Business Media,...
    • 28. Sinelshchikov, D.I.: Linearizabiliy and Lax representations for cubic autonomous and non-autonomous nonlinear oscillators. Physica D....
    • 29. Solomon, S., Richmond, P.: Stable power laws in variable economies; Lotka-Volterra implies ParetoZipf. Eur. Phys. J. B. Condens. Matter...
    • 30. Tang, Y., Li, F.: Multiple stable states for a class of predator-prey systems with two harvesting rates. J. Appl. Anal. Comput. 14, 506–514...
    • 31. Tang, Y., Wu, Y., Li, F.: Integrability and bifurcation of limit cycles for a class of quasi-homogeneous systems. J. Appl. Anal. Comput....
    • 32. Wang, Q., Huang, W.: Integrability and linearizability for Lotka-Volterra systems with the 3 : −q resonant saddle point. Adv. Differ....
    • 33. Zóladek, H.: The problem of center for resonant singular points of polynomial vector fields. J. Differ. Equ. 137, 94–118 (1997). https://doi.org/10.1006/jdeq.1997.3260

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno