Ir al contenido

Documat


Integrability Properties of Generalized Liénard Differential Equations

  • Maria V. Demina [1] ; Varvara G. Nechitailo [1]
    1. [1] HSE University
  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 24, Nº 1, 2025
  • Idioma: inglés
  • Enlaces
  • Resumen
    • We classify generalized Liénard differential equations, sometimes called Liénard type equations, that have integrating factors of a special form. We present first integrals of the related equations. Our families of equations contain almost all known integrable generalized Liénard equations as partial cases. We find the necessary and sufficient conditions of the Liouvillian integrability for the polynomial generalized Liénard equations provided that they are nondegenerate near infinity. The degenerate near infinity polynomial generalized Liénard equations exist only under some restrictions on the degrees and leading coefficients of the polynomials parameterizing the equations. We provide a number of novel integrable polynomial and rational generalized Liénard equations. These equations arise in a variety of applications.

  • Referencias bibliográficas
    • 1. Andronov, A.A., Vitt, A.A., Khaikin, S.E.: Theory of Oscillators. Adiwes International Series in Physics, Pergamon (1966)
    • 2. Ghosh, S., Ray, D.: Liénard-type chemical oscillator. Eur Phys J B 87, 65 (2014)
    • 3. Kazakov, A.: Solutions to nonlinear evolutionary parabolic equations of the diffusion wave type. Symmetry 13(5), 871 (2021)
    • 4. Pradeep, R.G., Chandrasekar, V.K., Senthilvelan, M., Lakshmanan, M.: On certain new integrable second order nonlinear differential equations...
    • 5. Llibre, J., Valls, C.: Liouvillian first integrals for generalized Liénard polynomial differential systems. Adv. Nonlinear Stud. 13, 819–829...
    • 6. Demina, M.V.: Integrability and solvability of polynomial Liénard differential systems. Stud. Appl. Math. 150(3), 755–817 (2023)
    • 7. Acosta-Humánez, P.B., Lázaro, J.T., Morales-Ruiz, J.J., Pantazi, C.: On the integrability of polynomial vector fields in the plane by means...
    • 8. Rodríguez-Contreras, J., Acosta-Humánez, P.B., Reyes-Linero, A.: Algebraic and qualitative remarks about the family yy =(αxm+k−1+...
    • 9. Sabatini, M.: On the period function of x + f (x)x2 + g(x) = 0. J. Diff. Equ. 196, 151–168 (2004)
    • 10. Polyanin, A.D., Zaitsev, V.F.: Handbook of Exact Solutions for Ordinary Differential Equations, Secod Chapman and Hall, Boca Raton (2003)
    • 11. Nakpim, W., Meleshko, S.V.: Linearization of second-order ordinary differential equations by generalized Sundman transformations. SIGMA....
    • 12. Harko, T., Lobo, F.S.N., Mak, M.K.: A class of exact solutions of the Liénard-type ordinary nonlinear differential equation. J. Eng. Math....
    • 13. Giné, J., Valls, C.: The Liouvillian integrability of several oscillators. Int. J. Bifurc. Chaos 29(5), 1950069 (2019)
    • 14. Sinelshchikov, D.I.: Nonlocal deformations of autonomous invariant curves for Liénard equations with quadratic damping. Chaos Solitons...
    • 15. Sinelshchikov, D.I.: On linearizability via nonlocal transformations and first integrals for second-order ordinary differential equations....
    • 16. Ishchenko, A.R., Sinelshchikov, D.I.: On an integrable family of oscillators with linear and quadratic damping. Chaos Solitons Fractals...
    • 17. Carinena, J.F., Martínez, E., Muñoz-Lecanda, M.C.: Sundman transformation and alternative tangent structures. J. Phys. A Math. Theoret....
    • 18. Demina, M.V.: The Darboux polynomials and integrability of polynomial Levinson-Smith differential equations. Int. J. Bifurc. Chaos 33(03),...
    • 19. Ince, E.L.: Ordinary Differential Equations. Dover Publications, Repirnt edition (2015)
    • 20. Liouville, R.: Sur les invariants de certaines équations différentielles et sur leurs applications. Journal de l’École polytechnique 59,...
    • 21. Sharipov, R.: Effective procedure of point-classification for the equation y = p+3qy +3r y22+sy3. arXiv preprint arXiv:math/9802027...
    • 22. Bagderina, Y.Y.: Invariants of a family of scalar second-order ordinary differential equations for Lie symmetries and first integrals....
    • 23. Berkovich, L.: The method of an exact linearization of n-order ordinary differential equations. J. Nonlinear Math. Phys. 3(3–4), 341–350...
    • 24. Muriel, C., Romero, J.: Nonlocal transformations and linearization of second-order ordinary differential equations. J. Phys. A Math. Theoret....
    • 25. Gasull, A., Torregrosa, J.: Center problem for several differential equations via Cherkas’ method. J. Math. Anal. Appl. 228(2), 322–343...
    • 26. Giné, J.: Stability condition for nilpotent singularities by its complex separatrices. Math. Methods Appl. Sci. (2024). https://doi.org/10.1002/mma.10197
    • 27. Chiellini, A.: Sullíntegrazione della equazione differenziale y + Py2 + Qy3 = 0. Bollettino della Unione Matematica Italiana...
    • 28. Christopher, C., Schlomiuk, D.: On general algebraic mechanisms for producing centers in polynomial differential systems. J. Fixed Point...
    • 29. Rosenau, P.: On a model equation of traveling and stationary compactons. Phys. Lett. A 356(1), 44–50 (2006)
    • 30. Giné, J., Romanovski, V.G.: Linearizability conditions for Lotka-Volterra planar complex cubic systems. J. Phys. A Math. Theoret. 42(22),...
    • 31. Zhang, X.: Integrability of Dynamical Systems: Algebra and Analysis, vol. 47. Springer, Singapore (2017)
    • 32. García, I.A., Giné, J., Giacomini, H.: Generalized nonlinear superposition principles for polynomial planar vector fields. J. Lie Theory...
    • 33. Christopher, C.J.: Liouvillian first integrals of second order polynomial differential equations. Electron. J. Different. Equ. 49, 1–7...
    • 34. Demina, M.V., Giné, J., Valls, C.: Puiseux integrability of differential equations. Qualit. Theory Dyn. Syst. 21(1), 35 (2022)
    • 35. Bruno, A.D.: Asymptotic behaviour and expansions of solutions of an ordinary differential equation. Russ. Math. Surv. 59(3), 429–481 (2004)
    • 36. Bruno, A.D.: Power Geometry in Algebraic and Differential Equations. Elsevier Science, NorthHolland (2000)
    • 37. Singer, M.F.: Liouvillian first integrals of differential systems. Trans. Am. Math. Soc. 333, 673–688 (1992)
    • 38. Demina, M.V.: Necessary and sufficient conditions for the existence of invariant algebraic curves. Electronic J. Qualit. Theory Different....
    • 39. Demina, M.V.: The method of Puiseux series and invariant algebraic curves. Commun. Contemp. Math. 24(03), 2150007 (2022)
    • 40. Demina, M.V.: Novel algebraic aspects of Liouvillian integrability for two-dimensional polynomial dynamical systems. Phys. Lett. A 382(20),...
    • 41. Demina, M.V.: Invariant surfaces and Darboux integrability for non-autonomous dynamical systems in the plane. J. Phys. A Math. Theoret....
    • 42. Demina, M.V.: Classifying algebraic invariants and algebraically invariant solutions. Chaos Solitons Fractals 140, 110219 (2020)
    • 43. Demina, M.V.: Liouvillian integrability of the generalized Duffing oscillators. Anal. Math. Phys. 11(1), 1–25 (2021)
    • 44. Oliveira, R., Schlomiuk, D., Travaglini, A.M., Valls, C.: Geometry, integrability and bifurcation diagrams of a family of quadratic differential...
    • 45. Ruiz Serván, A., Muriel Patino, M.C.: Exact solutions to a family of position-dependent mass damped oscillators from variational λ-symmetries....

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno