Ir al contenido

Documat


Revisiting the Marcinkiewicz theorem for non-commutative maximal functions

  • Autores: Léonard Cadilhac Árbol académico, Eric Ricard
  • Localización: Publicacions matematiques, ISSN 0214-1493, Vol. 69, Nº 1, 2025, págs. 195-216
  • Idioma: inglés
  • DOI: 10.5565/publmat6912509
  • Enlaces
  • Resumen
    • We give an alternative proof of a Marcinkiewicz interpolation theorem for non-commutative maximal functions and positive maps and refine earlier versions of the statement. The main novelty is that it provides a substitute for the maximal function of a martingale in Lp, 1 < p 6 ∞, losing very little on numerical constants. For non-positive maps, the above mentioned theorem fails but we can still obtain some interpolation results by weakening the maximal norm that we consider.

  • Referencias bibliográficas
    • T. N. Bekjan, Z. Chen, and A. Ose¸kowski, Noncommutative maximal inequalities associated with convex functions, Trans. Amer. Math. Soc. 369(1)...
    • J. Bergh and J. Lofstr ¨ om¨ , Interpolation Spaces. An Introduction, Grundlehren der Mathematischen Wissenschaften 223, Springer-Verlag,...
    • D. W. Boyd, Indices of function spaces and their relationship to interpolation, Canadian J. Math. 21 (1969), 1245–1254. DOI: 10.4153/CJM-1969-137-x
    • A.-P. Calderon´ , Spaces between L1 and L∞ and the theorem of Marcinkiewicz, Studia Math. 26 (1966), 273–299. DOI: 10.4064/sm-26-3-301-304
    • V. Chilin and S. Litvinov, On individual ergodic theorems for semifinite von Neumann algebras, J. Math. Anal. Appl. 495(1) (2021), Paper no....
    • I. Cuculescu, Martingales on von Neumann algebras, J. Multivariate Anal. 1(1) (1971), 17–27. DOI: 10.1016/0047-259X(71)90027-3
    • S. Dirksen, Noncommutative Boyd interpolation theorems, Trans. Amer. Math. Soc. 367(6) (2015), 4079–4110. DOI: 10.1090/S0002-9947-2014-06185-0
    • S. Dirksen, Weak-type interpolation for noncommutative maximal operators, J. Operator Theory 73(2) (2015), 515–532. DOI: 10.7900/jot.2014mar12.2022
    • G. Hong, M. Junge, and J. Parcet, Algebraic Davis decomposition and asymmetric Doob inequalities, Comm. Math. Phys. 346(3) (2016), 995–1019....
    • R. Jajte, Strong Limit Theorems in Non-Commutative Probability, Lecture Notes in Math. 1110, Springer-Verlag, Berlin, 1985. DOI: 10.1007/BFb0101453
    • M. Junge, Doob’s inequality for non-commutative martingales, J. Reine Angew. Math. 549 (2002), 149–190. DOI: 10.1515/crll.2002.061
    • M. Junge and Q. Xu, Noncommutative Burkholder/Rosenthal inequalities, Ann. Probab. 31(2) (2003), 948–995. DOI: 10.1214/aop/1048516542
    • M. Junge and Q. Xu, Noncommutative maximal ergodic theorems, J. Amer. Math. Soc. 20(2) (2007), 385–439. DOI: 10.1090/S0894-0347-06-00533-9
    • M. Junge and Q. Xu, Notes on real interpolation of operator Lp-spaces, Acta Math. Sci. Ser. B (Engl. Ed.) 41(6) (2021), 2173–2182. DOI: 10.1007/s10473-021-0622-2
    • E. C. Lance, Ergodic theorems for convex sets and operator algebras, Invent. Math. 37(3) (1976), 201–214. DOI: 10.1007/BF01390319
    • S. J. Montgomery-Smith, The Hardy operator and Boyd indices, in: Interaction between Functional Analysis, Harmonic Analysis, and Probability...
    • M. Musat, Interpolation between non-commutative BMO and non-commutative Lp-spaces, J. Funct. Anal. 202(1) (2003), 195–225. DOI: 10.1016/S0022-1236(03)00099-5.
    • G. Pisier, Factorization of Linear Operators and Geometry of Banach Spaces, CBMS Regional Conf. Ser. in Math. 60, Published for the Conference...
    • G. Pisier, Non-commutative vector valued Lp-spaces and completely p-summing maps, Ast´erisque 247 (1998), 131 pp
    • L. Wu, R. Xia, and D. Zhou, Asymmetric Burkholder inequalities in noncommutative symmetric spaces, Preprint (2022). arXiv:2201.05474
    • F. J. Yeadon, Ergodic theorems for semifinite von Neumann algebras—I, J. London Math. Soc. (2) 16(2) (1977), 326–332. DOI: 10.1112/jlms/s2-16.2.326

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno