Ir al contenido

Documat


On an almost sharp Liouville type theorem for fractional Navier-Stokes equations

  • Autores: Diego Chamorro, Bruno Poggi
  • Localización: Publicacions matematiques, ISSN 0214-1493, Vol. 69, Nº 1, 2025, págs. 27-43
  • Idioma: inglés
  • DOI: 10.5565/publmat6912502
  • Enlaces
  • Resumen
    • We investigate existence, Liouville-type theorems, and regularity results for the 3D stationary and incompressible fractional Navier-Stokes equations: in this setting the usual Laplacian is replaced by its fractional power (−∆) α 2 with 0 < α < 2. By applying a fixed-point argument, weak solutions can be obtained in the Sobolev space H˙α2 (R3) and if we add an extra integrability condition, stated in terms of Lebesgue spaces, then we can prove for some values of α that the zero function is the unique smooth solution. The additional integrability condition is almost sharp for 3/5 < α < 5/3. Moreover, in the case 1 < α < 2 a gain of regularity is established under some conditions, although the study of regularity in the regime 0 < α ≤ 1 seems for the moment to be an open problem.

  • Referencias bibliográficas
    • J. Bergh and J. Lofstr ¨ om¨ , Interpolation Spaces. An Introduction, Grundlehren der Mathematischen Wissenschaften 223, Springer-Verlag,...
    • L. Caffarelli and L. Silvestre, An extension problem related to the fractional Laplacian, Comm. Partial Differential Equations 32(8) (2007),...
    • D. Chamorro, O. Jarr´ın, and P.-G. Lemarie-Rieusset ´ , Some Liouville theorems for stationary Navier–Stokes equations in Lebesgue and Morrey...
    • G. P. Galdi, An Introduction to the Mathematical Theory of the Navier–Stokes Equations. Steady-State Problems, Second edition, Springer Monogr....
    • L. Grafakos and S. Oh, The Kato–Ponce inequality, Comm. Partial Differential Equations (6) (2014), 1128–1157. DOI: 10.1080/03605302.2013.822885
    • O. Jarr´ın, A remark on the Liouville problem for stationary Navier–Stokes equations in Lorentz and Morrey spaces, J. Math. Anal. Appl. 486(1)...
    • G. Koch, N. Nadirashvili, G. A. Seregin, and V. Sver ˇ ak´ , Liouville theorems for the Navier–Stokes equations and applications, Acta Math....
    • H. Kozono, Y. Terasawa, and Y. Wakasugi, A remark on Liouville-type theorems for the stationary Navier–Stokes equations in three space dimensions,...
    • P. G. Lemarie-Rieusset ´ , The Navier–Stokes Problem in the 21st Century, CRC Press, Boca Raton, FL, 2016. DOI: 10.1201/b19556
    • V. Naibo and A. Thomson, Coifman–Meyer multipliers: Leibniz-type rules and applications to scattering of solutions to PDEs, Trans. Amer. Math....
    • G. Seregin, Liouville type theorem for stationary Navier–Stokes equations, Nonlinearity 29(8) (2016), 2191–2195. DOI: 10.1088/0951-7715/29/8/2191
    • G. Seregin, A Liouville type theorem for steady-state Navier–Stokes equations, Journ´ees Equations aux d´eriv´ees partielles ´ , Roscoff,...
    • L. Tang and Y. Yu, Partial H¨older regularity of the steady fractional Navier–Stokes equations, Calc. Var. Partial Differential Equations...
    • Y. Wang and J. Xiao, A Liouville problem for the stationary fractional Navier–Stokes–Poisson system, J. Math. Fluid Mech. 20(2) (2018), 485–498....

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno