Ir al contenido

Documat


On the strong subdifferentiability of homogeneous polynomials and (symmetric) tensor products

  • Autores: Sheldon Dantas, Mingu Jung, Martin Mazzitelli, Jorge Tomás Rodríguez
  • Localización: Publicacions matematiques, ISSN 0214-1493, Vol. 69, Nº 1, 2025, págs. 109-145
  • Idioma: inglés
  • DOI: 10.5565/publmat6912505
  • Enlaces
  • Resumen
    • We study the (uniform) strong subdifferentiability of norms of Banach spaces P(N X, Y ∗) of all continuous N-homogeneous polynomials and tensor products of Banach spaces, namely X⊗b π· · · ⊗b πX and ⊗b πs,NX. Among other results, we characterize when the norms of spaces P(N'p, 'q), P(N lM1, lM2), and P(N d(w, p), lM2) are strongly subdifferentiable. Analogous results for multilinear mappings are also obtained. Since strong subdifferentiability of a dual space implies reflexivity, we improve some known results in [38, 48, 49] (in the spirit of Pitt's compactness theorem) on the reflexivity of spaces of N-homogeneous polynomials and N-linear mappings. Concerning the projective (symmetric) tensor norms, we provide positive results by considering the subsets U and Us of elementary tensors on the unit spheres of X⊗b π · · · ⊗b πX and ⊗b πs,N X, respectively. Specifically, we prove that the norms of ⊗b πs,N '2 and '2⊗b π · · · ⊗b π'2 are uniformly strongly subdifferentiable on Us and U, and that the norms of c0⊗b πs c0 and c0⊗b πc0 are strongly subdifferentiable on Us and U in the complex case.

  • Referencias bibliográficas
    • M. D. Acosta, The Bishop–Phelps–Bollob´as property for operators on C(K), Banach J. Math. Anal. 10(2) (2016), 307–319. DOI: 10.1215/17358787-3492875
    • M. D. Acosta, On the Bishop–Phelps–Bollob´ass property, in: Function Spaces XII, Banach Center Publ. 119, Polish Academy of Sciences, Institute...
    • M. D. Acosta, R. M. Aron, D. Garc´ıa, and M. Maestre, The Bishop–Phelps–Bollob´as theorem for operators, J. Funct. Anal. 254(11) (2008), 2780–2799....
    • M. D. Acosta, J. Becerra-Guerrero, Y. S. Choi, D. Garc´ıa, S. K. Kim, H. J. Lee, and M. Maestre, The Bishop–Phelps–Bollob´as property for...
    • M. Acosta, J. Becerra-Guerrero, D. Garc´ıa, and M. Maestre, The Bishop–Phelps–Bollob´as theorem for bilinear forms, Trans. Amer. Math. Soc....
    • R. Alencar and K. Floret, Weak-strong continuity of multilinear mappings and the Pe lczy`nski–Pitt theorem, J. Math. Anal. Appl. 206(2)...
    • Z. Altshuler, Uniform convexity in Lorentz sequence spaces, Israel J. Math. 20(3-4) (1975), 260–274. DOI: 10.1007/BF02760331
    • C. Aparicio, F. Ocana, R. Pay ˜ a, and A. Rodr ´ ´ıguez, A nonsmooth extension of Fr´echet differentiability of the norm with applications...
    • R. Aron, C. Boyd, and Y. S. Choi, Unique Hahn–Banach theorems for spaces of homogeneous polynomials, J. Aust. Math. Soc. 70(3) (2001), 387–400....
    • E. A. Ausekle and E. F. Oja, Pitt’s theorem for Lorentz and Orlicz sequence spaces, Math. Notes 61(1-2) (1997), 16–21. DOI: 10.1007/BF02355003
    • J. Becerra Guerrero and A. M. Peralta, Subdifferentiability of the norm and the Banach–Stone theorem for real and complex JB∗-triples, Manuscripta...
    • J. Becerra Guerrero and A. Rodr´ıguez Palacios, Strong subdifferentiability of the norm on JB∗-triples, Q. J. Math. 54(4 (2003), 381–390....
    • E. Bishop and R. R. Phelps, A proof that every Banach space is subreflexive, Bull. Amer. Math. Soc. 67 (1961), 97–98. DOI: 10.1090/S0002-9904-1961-10514-4
    • B. Bollobas´ , An extension to the theorem of Bishop and Phelps, Bull. London Math. Soc. (2) (1970), 181–182. DOI: 10.1112/blms/2.2.181
    • J. Bourgain, On dentability and the Bishop–Phelps property, Israel J. Math. 28(4) (1977), –271. DOI: 10.1007/BF02760634
    • C. Boyd and R. A. Ryan, Geometric theory of spaces of integral polynomials and symmetric tensor products, J. Funct. Anal. 179(1) (2001), 18–42....
    • F. Cabello Sanchez, S. Dantas, V. Kadets, S. K. Kim, H. J. Lee, and M. Mart ´ ´ın, On Banach spaces whose group of isometries acts micro-transitively...
    • P. G. Casazza and B.-L. Lin, Some geometric properties of Lorentz sequence spaces, Rocky Mountain J. Math. 7(4) (1977), 683–698. DOI: 10.1216/RMJ-1977-7-4-683
    • S. Chen, Geometry of Orlicz spaces, With a preface by Julian Musielak, Dissertationes Math. (Rozprawy Mat.) 356 (1996), 204 pp.
    • G. Choi and S. K. Kim, The Bishop–Phelps–Bollob´as property on the space of c0-sum, Mediterr. J. Math. 19(2) (2022), Paper no. 72, 16 pp....
    • Y. S. Choi, S. Dantas, and M. Jung, The Bishop–Phelps–Bollob´as properties in complex Hilbert spaces, Math. Nachr. 294(11) (2021), 2105–2120....
    • M. D. Contreras, Strong subdifferentiability in spaces of vector-valued continuous functions, Quart. J. Math. Oxford Ser. (2) 47(186) (1996),...
    • M. D. Contreras and R. Paya´, On upper semicontinuity of duality mappings, Proc. Amer. Math. Soc. 121(2) (1994), 451–459. DOI: 10.2307/2160421
    • S. Dantas, Some kind of Bishop–Phelps–Bollob´as property, Math. Nachr. 290(5-6) (2017), –784. DOI: 10.1002/mana.201500487
    • S. Dantas, D. Garc´ıa, M. Maestre, and O. Rold ´ an´ , The Bishop–Phelps–Bollob´as theorem: an overview, in: Operator and Norm Inequalities...
    • S. Dantas, L. C. Garc´ıa-Lirola, M. Jung, and A. Rueda Zoca, On norm-attainment in (symmetric) tensor products, Quaest. Math. 46(2) (2023),...
    • S. Dantas, P. Hajek, and T. Russo ´ , Smooth norms in dense subspaces of Banach spaces, J. Math. Anal. Appl. 487(1) (2020), 123963, 16 pp....
    • S. Dantas, P. Hajek, and T. Russo ´ , Smooth and polyhedral norms via fundamental biorthogonal systems, Int. Math. Res. Not. IMRN 2023(16)...
    • S. Dantas, M. Jung, O. Rold ´ an, and A. Rueda Zoca ´ , Norm-attaining tensors and nuclear operators, Mediterr. J. Math. 19(1) (2022), Paper...
    • S. Dantas, V. Kadets, S. K. Kim, H. J. Lee, and M. Mart´ın, On the pointwise Bishop–Phelps–Bollob´as property for operators, Canad. J. Math....
    • S. Dantas, S. K. Kim, and H. J. Lee, The Bishop–Phelps–Bollob´as point property, J. Math. Anal. Appl. 444(2) (2016), 1739–1751. DOI: 10.1016/j.jmaa.2016.07.009
    • S. Dantas, S. K. Kim, H. J. Lee, and M. Mazzitelli, Local Bishop–Phelps–Bollob´as properties, J. Math. Anal. Appl. 468(1) (2018), 304–323....
    • S. Dantas, S. K. Kim, H. J. Lee, and M. Mazzitelli, Strong subdifferentiability and local Bishop–Phelps–Bollob´as properties, Rev. R. Acad....
    • S. Dantas and A. Rueda Zoca, A characterization of a local vector valued Bollob´as theorem, Results Math. 76(4) (2021), Paper no. 167, 14...
    • ] A. Defant and K. Floret, Tensor Norms and Operator Ideals, North-Holland Math. Stud. 176, North-Holland Publishing Co., Amsterdam, 1993.
    • R. Deville, G. Godefroy, and V. Zizler, Smoothness and Renormings in Banach Spaces, Pitman Monogr. Surveys Pure Appl. Math. 64, Longman Scientific...
    • J. Diestel, J. H. Fourie, and J. Swart, The Metric Theory of Tensor Products: Grothendieck’s R´esum´e Revisited, American Mathematical Society,...
    • V. Dimant and I. Zalduendo, Bases in spaces of multilinear forms over Banach spaces, J. Math. Anal. Appl. 200(3) (1996), 548–566. DOI: 10.1006/jmaa.1996.0224
    • S. Dineen, Complex Analysis on Infinite Dimensional Spaces, Springer Monogr. Math., Springer-Verlag London, Ltd., London, 1999. DOI: 10.1007/978-1-4471-0869-6
    • J. Ferrera, Norm-attaining polynomials and differentiability, Studia Math. 151(1) (2002), 1–21. DOI: 10.4064/sm151-1-1
    • K. Floret, Natural norms on symmetric tensor products of normed spaces, in: Proceedings of the Second International Workshop on Functional...
    • C. Franchetti, Lipschitz maps and the geometry of the unit ball in normed spaces, Arch. Math. (Basel) 46(1) (1986), 76–84. DOI: 10.1007/BF01197144
    • C. Franchetti and R. Paya´, Banach spaces with strongly subdifferentiable norm, Boll. Un. Mat. Ital. B (7) 7(1) (1993), 45–70.
    • D. García, M. Maestre, and H. J. Lee, The Bishop–Phelps–Bollob´as property for Hermitian forms on Hilbert spaces, Q. J. Math. 65(1) (2014),...
    • J. R. Giles, D. A. Gregory, and B. Sims, Geometrical implications of upper semi-continuity of the duality mapping on a Banach space, Pacific...
    • G. Godefroy, Some applications of Simons’ inequality, Serdica Math. J. 26(1) (2000), 59–78.
    • G. Godefroy, V. Montesinos, and V. Zizler, Strong subdifferentiability of norms and geometry of Banach spaces, Comment. Math. Univ. Carolin....
    • R. Gonzalo, Upper and lower estimates in Banach sequence spaces, Comment. Math. Univ. Carolin. 36(4) (1995), 641–653.
    • R. Gonzalo and J. A. Jaramillo, Compact polynomials between Banach spaces, Proc. Roy. Irish Acad. Sect. A 95(2) (1995), 213–226.
    • D. A. Gregory, Upper semicontinuity of subdifferential mappings, Canad. Math. Bull. 23(1) (1980), 11–19. DOI: 10.4153/CMB-1980-002-9
    • J. A. Jaramillo, A. Prieto, and I. Zalduendo, The bidual of the space of polynomials on a Banach space, Math. Proc. Cambridge Philos. Soc....
    • M. Jung, Daugavet property of Banach algebras of holomorphic functions and norm-attaining holomorphic functions, Adv. Math. 421 (2023), Paper...
    • M. Jung, M. Mart´ın, and A. Rueda Zoca, Residuality in the set of norm attaining operators between Banach spaces, J. Funct. Anal. 284(2) (2023),...
    • S. K. Kim and H. J. Lee, Uniform convexity and Bishop–Phelps–Bollob´as property, Canad. J. Math. 66(2) (2014), 373–386. DOI: 10.4153/CJM-2013-009-2
    • J. Lindenstrauss, On operators which attain their norm, Israel J. Math. 1 (1963), 139–148. DOI: 10.1007/BF02759700
    • J. Lindenstrauss and L. Tzafriri, On Orlicz sequence spaces. II, Israel J. Math. 11 (1972), 355–379. DOI: 10.1007/BF02761463
    • J. Lindenstrauss and L. Tzafriri, On Orlicz sequence spaces. III, Israel J. Math. 14 (1973), 368–389. DOI: 10.1007/BF02764715
    • J. Lindenstrauss and L. Tzafriri, Classical Banach spaces. I. Sequence spaces, Ergeb. Math. Grenzgeb. 92, Springer-Verlag, Berlin-New York,...
    • J. Mujica, Reflexive spaces of homogeneous polynomials, Bull. Polish Acad. Sci. Math. 49(3) (2001), 211–222.
    • A. Pe lczynski ´ , A property of multilinear operations, Studia Math. 16 (1957), 173–182. DOI: 10.4064/sm-16-2-173-182
    • A. Rodr´ıguez Palacios, A numerical range characterization of uniformly smooth Banach spaces, Proc. Amer. Math. Soc. 129(3) (2001), 815–821....
    • W. H. Ruckle, Reflexivity of L(E, F), Proc. Amer. Math. Soc. 34(1) (1972), 171–174. DOI: 10.2307/2037920
    • R. A. Ryan, Introduction to Tensor Products of Banach Spaces, Springer Monogr. Math., Springer-Verlag London, Ltd., London, 2002. DOI: 10.1007/978-1-4471-3903-4
    • D. Sain, Smooth points in operator spaces and some Bishop–Phelps–Bollob´as type theorems in Banach spaces, Oper. Matrices 13(2) (2019), 433–445....
    • M. A. Smith, Some examples concerning rotundity in Banach spaces, Math. Ann. 233(2) (1978), 155–161. DOI: 10.1007/BF01421923
    • V. Smulian ˇ , Sur la d´erivabilit´e de la norme dans l’espace de Banach, C. R. (Doklady) Acad. Sci. URSS (N.S.) 27 (1940), 643–648
    • A. Szankowski, Subspaces without the approximation property, Israel J. Math. 30(1-2) (1978),–129. DOI: 10.1007/BF02760833
    • G. Willis, The compact approximation property does not imply the approximation property, Studia Math. 103(1) (1992), 99–108. DOI: 10.4064/sm-103-1-99-108

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno