Ir al contenido

Documat


Regularity results for a class of nonlocal double phase equations with VMO coefficients

  • Byun, Sun-Sig [1] ; Kim, Kyeongbae [1] ; Kumar, Deepak [1]
    1. [1] Seoul National University

      Seoul National University

      Corea del Sur

  • Localización: Publicacions matematiques, ISSN 0214-1493, Vol. 68, Nº. 2, 2024, págs. 507-544
  • Idioma: inglés
  • DOI: 10.5565/PUBLMAT6822407
  • Enlaces
  • Resumen
    • We study a class of nonlocal double phase problems with discontinuous coefficients. A local self-improving property and a higher H¨older continuity result for weak solutions to such problemsare obtained under the assumptions that the associated coefficient functions are of VMO (vanishing mean oscillation) type and that the principal coefficient depends not only on the variables but also on the solution itself.

  • Referencias bibliográficas
    • P. Auscher, S. Bortz, M. Egert, and O. Saari, Nonlocal self-improving properties: a functional analytic approach, Tunis. J. Math. 1(2) (2019),...
    • P. Baroni, M. Colombo, and G. Mingione, Regularity for general functionals with double phase, Calc. Var. Partial Differential Equations 57(2)...
    • L. Brasco and E. Lindgren, Higher Sobolev regularity for the fractional p-Laplace equation in the superquadratic case, Adv. Math. 304 (2017),...
    • L. Brasco, E. Lindgren, and A. Schikorra, Higher H¨older regularity for the fractional pLaplacian in the superquadratic case, Adv. Math. 338...
    • S.-S. Byun, H. Kim, and J. Ok, Local H¨older continuity for fractional nonlocal equations with general growth, Math. Ann. 387(1-2) (2023),...
    • S.-S. Byun, J. Ok, and K. Song, H¨older regularity for weak solutions to nonlocal double phase problems, J. Math. Pures Appl. (9) 168 (2022),...
    • S.-S. Byun, D. K. Palagachev, and P. Shin, Global continuity of solutions to quasilinear equations with Morrey data, C. R. Math. Acad. Sci....
    • L. A. Caffarelli and X. Cabre´, Fully Nonlinear Elliptic Equations, Amer. Math. Soc. Colloq. Publ. 43, American Mathematical Society, Providence,...
    • L. Caffarelli and L. Silvestre, Regularity results for nonlocal equations by approximation, Arch. Ration. Mech. Anal. 200(1) (2011), 59–88....
    • L. A. Caffarelli and P. R. Stinga, Fractional elliptic equations, Caccioppoli estimates and regularity, Ann. Inst. H. Poincar´e C Anal. Non...
    • Chaker, M. Kim, and M. Weidner, Regularity for nonlocal problems with non-standard growth, Calc. Var. Partial Differential Equations 61(6)...
    • M. Colombo and G. Mingione, Bounded minimisers of double phase variational integrals, Arch. Ration. Mech. Anal. 218(1) (2015), 219–273. DOI:...
    • M. Colombo and G. Mingione, Regularity for double phase variational problems, Arch. Ration. Mech. Anal. 215(2) (2015), 443–496. DOI: 10.1007/s00205-014-0785-2
    • M. Cozzi, Regularity results and Harnack inequalities for minimizers and solutions of nonlocal problems: A unified approach via fractional...
    • C. De Filippis and G. Mingione, Lipschitz bounds and nonautonomous integrals, Arch. Ration. Mech. Anal. 242(2) (2021), 973–1057. DOI: 10.1007/s00205-021-01698-5
    • C. De Filippis and G. Mingione, Gradient regularity in mixed local and nonlocal problems, Math. Ann. 388(1) (2024), 261–328. DOI: 10.1007/s00208-022-02512-7
    • C. De Filippis and G. Palatucci, H¨older regularity for nonlocal double phase equations, J. Differential Equations 267(1) (2019), 547–586....
    • A. Di Castro, T. Kuusi, and G. Palatucci, Local behavior of fractional p-minimizers, Ann. Inst. H. Poincar´e C Anal. Non Lin´eaire 33(5) (2016),...
    • M. M. Fall, Regularity results for nonlocal equations and applications, Calc. Var. Partial Differential Equations 59(5) (2020), Paper no....
    • M. M. Fall, T. Mengesha, A. Schikorra, and S. Yeepo, Calder´on–Zygmund theory for non-convolution type nonlocal equations with continuous...
    • Y. Fang and C. Zhang, On weak and viscosity solutions of nonlocal double phase equations, Int. Math. Res. Not. IMRN 2023(5) (2023), 3746–3789....
    • J. Giacomoni, D. Kumar, and K. Sreenadh, H¨older regularity results for parabolic nonlocal double phase problems, Adv. Differential Equations...
    • J. Giacomoni, D. Kumar, and K. Sreenadh, Global regularity results for non-homogeneous growth fractional problems, J. Geom. Anal. 32(1) (2022),...
    • J. Giacomoni, D. Kumar, and K. Sreenadh, Interior and boundary regularity results for strongly nonhomogeneous p, q-fractional problems, Adv....
    • E. Giusti, Direct Methods in the Calculus of Variations, World Scientific Publishing Co., Inc., River Edge, NJ, 2003. DOI: 10.1142/9789812795557
    • M. Kassmann, A priori estimates for integro-differential operators with measurable kernels, Calc. Var. Partial Differential Equations 34(1)...
    • J. Korvenpa¨a, T. Kuusi, and G. Palatucci ¨ , The obstacle problem for nonlinear integrodifferential operators, Calc. Var. Partial Differential...
    • T. Kuusi, G. Mingione, and Y. Sire, Nonlocal self-improving properties, Anal. PDE 8(1) (2015), 57–114. DOI: 10.2140/apde.2015.8.57
    • P. Marcellini, Regularity and existence of solutions of elliptic equations with p, q-growth conditions, J. Differential Equations 90(1) (1991),...
    • T. Mengesha, A. Schikorra, and S. Yeepo, Calder´on–Zygmund type estimates for nonlocal PDE with H¨older continuous kernel, Adv. Math. 383...
    • S. Nowak, Higher H¨older regularity for nonlocal equations with irregular kernel, Calc. Var. Partial Differential Equations 60(1) (2021),...
    • S. Nowak, Regularity theory for nonlocal equations with VMO coefficients, Ann. Inst. H. Poincar´e C Anal. Non Lin´eaire 40(1) (2023), 61–132....
    • S. Nowak, Improved Sobolev regularity for linear nonlocal equations with VMO coefficients, Math. Ann. 385(3-4) (2023), 1323–1378. DOI: 10.1007/s00208-022-02369-w
    • D. K. Palagachev, Global H¨older continuity of weak solutions to quasilinear divergence form elliptic equations, J. Math. Anal. Appl. 359(1)...
    • A. Schikorra, Nonlinear commutators for the fractional p-Laplacian and applications, Math. Ann. 366(1-2) (2016), 695–720. DOI: 10.1007/s00208-015-1347-0
    • J. M. Scott and T. Mengesha, A note on estimates of level sets and their role in demonstrating regularity of solutions to nonlocal double...
    • J. M. Scott and T. Mengesha, Self-improving inequalities for bounded weak solutions to nonlocal double phase equations, Commun. Pure Appl....
    • R. E. Showalter, Monotone Operators in Banach Space and Nonlinear Partial Differential Equations, Math. Surveys Monogr. 49, American Mathematical...
    • L. Silvestre, H¨older estimates for solutions of integro-differential equations like the fractional Laplace, Indiana Univ. Math. J. 55(3)...
    • V. V. Zhikov, Averaging of functionals of the calculus of variations and elasticity theory (Russian), Izv. Akad. Nauk SSSR Ser. Mat. 50(4)...

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno