Ir al contenido

Documat


On the duals of smooth projective complex hypersurfaces

  • Dimca, Alexandru [1] ; Ilardi, Giovanna [2]
    1. [1] Université Côte d'Azur

      Université Côte d'Azur

      Arrondissement de Grasse, Francia

    2. [2] University of Naples Federico II

      University of Naples Federico II

      Nápoles, Italia

  • Localización: Publicacions matematiques, ISSN 0214-1493, Vol. 68, Nº. 2, 2024, págs. 431-438
  • Idioma: inglés
  • DOI: 10.5565/PUBLMAT6822404
  • Enlaces
  • Resumen
    • We first show that a generic hypersurface V of degree d ≥ 3 in the projective complex space P n of dimension n ≥ 3 has at least one hyperplane section V ∩H containing exactly n ordinary double points, alias A1 singularities, in general position, and no other singularities. Equivalently, the dual hypersurface V ∨ has at least one normal crossing singularity of multiplicity n. Using this result, we show that the dual of any smooth hypersurface with n, d ≥ 3 has at least a very singular point q, in particular a point q of multiplicity ≥ n.

  • Referencias bibliográficas
    • V. I. Arnold, S. M. Gusein-Zade, and A. N. Varchenko, Singularities of Differentiable Maps. Vol. I, The Classification of Critical Points,...
    • D. Ayala and R. Cavalieri, Counting bitangents with stable maps, Expo. Math. 24(4) (2006), 307–335. DOI: 10.1016/j.exmath.2006.01.003
    • J. W. Bruce, The duals of generic hypersurfaces, Math. Scand. 49(1) (1981), 36–60. DOI: 10.7146/math.scand.a-11920
    • A. D. R. Choudary and A. Dimca, Koszul complexes and hypersurface singularities, Proc. Amer. Math. Soc. 121(4) (1994), 1009–1016. DOI: 10.2307/2161209
    • A. Dimca, Milnor numbers and multiplicities of dual varieties, Rev. Roumaine Math. Pures Appl. 31(6) (1986), 535–538.
    • A. Dimca, Topics on Real and Complex Singularities, An Introduction, Adv. Lectures Math., Friedr. Vieweg & Sohn, Braunschweig, 1987. DOI:...
    • I. V. Dolgachev, Classical Algebraic Geometry, A Modern View, Cambridge University Press, Cambridge, 2012. DOI: 10.1017/CBO9781139084437
    • P. Griffiths and J. Harris, Principles of Algebraic Geometry, Reprint of the 1978 original, Wiley Classics Lib., John Wiley & Sons, Inc.,...
    • M. Kuwata, Twenty-eight double tangent lines of a plane quartic curve with an involution and the Mordell–Weil lattices, Comment. Math. Univ....
    • S. Lojasiewicz, Introduction to Complex Analytic Geometry, Translated from the Polish by Maciej Klimek, Birkh¨auser Verlag, Basel, 1991. DOI:...
    • D. Mumford, Algebraic Geometry. I, Complex Projective Varieties, Grundlehren der Mathematischen Wissenschaften 221, Springer-Verlag, Berlin-New...
    • K. Saito, Quasihomogene isolierte Singularit¨aten von Hyperfl¨achen, Invent. Math. 14 (1971), 123–142. DOI: 10.1007/BF01405360
    • I. Vainsencher, Counting divisors with prescribed singularities, Trans. Amer. Math. Soc. 267(2) (1981), 399–422. DOI: 10.2307/1998661
    • G. Xu, Subvarieties of general hypersurfaces in projective space, J. Differential Geom. 39(1) (1994), 139–172. DOI: 10.4310/jdg/1214454680

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno