Ir al contenido

Documat


Cyclic coverings of rational normal surfaces which are quotients of a product of curves

    1. [1] Universidad de Zaragoza

      Universidad de Zaragoza

      Zaragoza, España

  • Localización: Publicacions matematiques, ISSN 0214-1493, Vol. 68, Nº. 2, 2024, págs. 359-406
  • Idioma: inglés
  • DOI: 10.5565/PUBLMAT6822402
  • Enlaces
  • Resumen
    • This paper deals with cyclic covers of a large family of rational normal surfaces that can also be described as quotients of a product, where the factors are cyclic covers of algebraic curves. We use a generalization of the Esnault–Viehweg method to show that the action of the monodromy on the first Betti group of the covering (and its Hodge structure) splits as a direct sum of the same data for some specific cyclic covers over P 1. This has applications to the study of Lˆe–Yomdin surface singularities, in particular to the action of the monodromy on the mixed Hodge structure, as well as to isotrivial fibered surfaces.

  • Referencias bibliográficas
    • V. Alexeev and R. Pardini, Non-normal abelian covers, Compos. Math. 148(4) (2012), 1051–1084. DOI: 10.1112/S0010437X11007482
    • E. Artal Bartolo, Forme de Jordan de la monodromie des singularit´es superisol´ees de surfaces, Mem. Amer. Math. Soc. 109(525) (1994), 84...
    • E. Artal Bartolo, Sur les couples de Zariski, J. Algebraic Geom. 3(2) (1994), 223–247.
    • E. Artal Bartolo, J. I. Cogolludo-Agust´ın, and J. Mart´ın-Morales, Coverings of rational ruled normal surfaces, in: Singularities, Algebraic...
    • E. Artal Bartolo, J. I. Cogolludo-Agust´ın, and J. Mart´ın-Morales, Cremona transformations of weighted projective planes, Zariski pairs,...
    • E. Artal Bartolo, J. I. Cogolludo-Agust´ın, and J. Mart´ın-Morales, Cyclic branched coverings of surfaces with abelian quotient singularities,...
    • E. Artal Bartolo, J. Fernandez de Bobadilla, I. Luengo, and A. Melle-Hernandez ´ , Milnor number of weighted-Lˆe–Yomdin singularities, Int....
    • E. Artal Bartolo, I. Luengo, and A. Melle Hernandez ´ , Superisolated surface singularities, in: Singularities and Computer Algebra, London...
    • E. Artal Bartolo, J. Mart´ın-Morales, and J. Ortigas-Galindo, Intersection theory on abelian-quotient V -surfaces and Q-resolutions, J. Singul....
    • I. C. Bauer, F. Catanese, and F. Grunewald, The classification of surfaces with pg = q = 0 isogenous to a product of curves, Pure...
    • R. Blache, Riemann–Roch theorem for normal surfaces and applications, Abh. Math. Sem. Univ. Hamburg 65 (1995), 307–340. DOI: 10.1007/BF02953338
    • F. Catanese, Fibred surfaces, varieties isogenous to a product and related moduli spaces, Amer. J. Math. 122(1) (2000), 1–44. DOI: 10.1353/ajm.2000.0002
    • J. I. Cogolludo-Agust´ın and J. Mart´ın-Morales, The correction term for the Riemann–Roch formula of cyclic quotient singularities and associated...
    • P. Deligne, Th´eorie de Hodge I, in: Actes du Congr`es International des Math´ematiciens (Nice, 1970), Tome 1, Gauthier-Villars Editeur,...
    • P. Deligne, Th´eorie de Hodge, II, Inst. Hautes Etudes Sci. Publ. Math. ´ 40 (1971), 5–57.
    • P. Deligne, Th´eorie de Hodge, III, Inst. Hautes Etudes Sci. Publ. Math. ´ 44 (1974), 5–77.
    • H. Esnault, Fibre de Milnor d’un cˆone sur une courbe plane singuli`ere, Invent. Math. 68(3) (1982), 477–496. DOI: 10.1007/BF01389413
    • H. Esnault and E. Viehweg, Revˆetements cycliques, in: Algebraic Threefolds (Varenna, 1981), Lecture Notes in Math. 947, Springer-Verlag,...
    • I. N. Iomdin, Complex surfaces with a one-dimensional set of singularities (Russian), Sibirsk. Mat. Z. ˇ 15 (1974), 1061–1082, 1181.
    • D. T. Leˆ, Ensembles analytiques complexes avec lieu singulier de dimension un (d’apres I. N. Iomdine), in: Seminar on Singularities (Paris,...
    • A. Libgober, Alexander polynomial of plane algebraic curves and cyclic multiple planes, Duke Math. J. 49(4) (1982), 833–851. DOI: 10.1215/S0012-7094-82-04941-9
    • F. Loeser and M. Vaquie´, Le polynˆome d’Alexander d’une courbe plane projective, Topology 29(2) (1990), 163–173. DOI: 10.1016/0040-9383(90)90005-5
    • ] I. Luengo, The µ-constant stratum is not smooth, Invent. Math. 90(1) (1987), 139–152. DOI: 10.1007/BF01389034
    • J. Mart´ın-Morales, Embedded Q-resolutions for Yomdin–Lˆe surface singularities, Israel J. Math. 204(1) (2014), 97–143. DOI: 10.1007/s11856-014-1078-z
    • J. Mart´ın-Morales, Semistable reduction of a normal crossing Q-divisor, Ann. Mat. Pura Appl. (4) 195(5) (2016), 1749–1769. DOI: 10.1007/s10231-015-0546-3
    • J. Mart´ın-Morales, Jordan blocks of Yomdin–Lˆe surface singularities, work in preparation.
    • D. Mumford, The topology of normal singularities of an algebraic surface and a criterion for simplicity, Inst. Hautes Etudes Sci. Publ. Math....
    • R. Pardini, Abelian covers of algebraic varieties, J. Reine Angew. Math. 1991(417) (1991), 191–213. DOI: 10.1515/crll.1991.417.191
    • C. Sabbah, Modules d’Alexander et D-modules, Duke Math. J. 60(3) (1990), 729–814. DOI: 10.1215/S0012-7094-90-06030-2.
    • F. Sakai, Weil divisors on normal surfaces, Duke Math. J. 51(4) (1984), 877–887. DOI: 10.1215/S0012-7094-84-05138-X
    • J. H. M. Steenbrink, Mixed Hodge structure on the vanishing cohomology, in: Real and Complex Singularities (Proc. Ninth Nordic Summer School/NAVF...
    • S. S.-T. Yau, Topological type of isolated hypersurface singularities, in: Recent Developments in Geometry (Los Angeles, CA, 1987), Contemp....
    • O. Zariski, On the problem of existence of algebraic functions of two variables possessing a given branch curve, Amer. J. Math. 51(2) (1929),...
    • O. Zariski, On the irregularity of cyclic multiple planes, Ann. of Math. (2) 32(3) (1931), 485–511. DOI: 10.2307/1968247

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno