Ir al contenido

Documat


A Formulation of Noether’s Theorem for Pseudo-Problems of the Calculus of Variations

  • Gastão Frederico [1] ; José Vanterler da Costa Sousa [3] ; Daniela dos Santos Oliveira [2] ; Felix Silva Costa [3]
    1. [1] Universidade Federal do Ceará

      Universidade Federal do Ceará

      Brasil

    2. [2] Universidade Federal de São Paulo

      Universidade Federal de São Paulo

      Brasil

    3. [3] DEMATI-UEMA
  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 23, Nº Extra 1, 2024
  • Idioma: inglés
  • DOI: 10.1007/s12346-024-01187-6
  • Enlaces
  • Resumen
    • In this present paper, we concern an extension of some results of the calculus of variations to the theory of pseudo-operators. We prove the Euler-Lagrange equations, the D’Alembert principle in differential form, and Noether’s theorem. In this sense, comments and some examples regarding the problems of the calculus of variations conclude the paper.

  • Referencias bibliográficas
    • 1. Agahi, H., Babakhani, A., Mesiar, R.: Pseudo-fractional integral inequality of Chebyshev type. Inf. Sci. 301, 161–168 (2015)
    • 2. Almeida, R., Torres, D.F.M.: Calculus of variations with fractional derivatives and fractional integrals. Appl. Math. Lett. 22(12), 1816–1820...
    • 3. Babakhani, A., Yadollahzadeh, M., Neamaty, A.: Some properties of pseudo-fractional operators. J. Pseudo-Differ. Oper. Appl. 9(3), 677–700...
    • 4. Buttazzo, G., Giaquinta, M., Hildebrandt, S.: One-Dimensional Variational Problems: An Intrudution. Oxford University Press, UK (1998)
    • 5. Castilo, E., Luceno, A., Pedregal, P.: Composition functionals in calculus of variations: applications to products and quotients. Math....
    • 6. Cannarsa, P., Cheng, W., Jin, L., Wang, K., Yan, J.: Herglotz variational principle and Lax-Oleinik evolution. J. Math. Pure Appl. 141,...
    • 7. Mesiar, R., Pap, E.: Idempotent integral as limit of g-Integrals. Fuzzy Sets Syst. 102(3), 385–392 (1999)
    • 8. Counihan, M.: Presenting Newtonian gravitation. Eur. J. Phys. 28(6), 1189 (2007)
    • 9. Dacorogna, B.: Direct methods in the calculus of variations second edition. Appl. Math. Sci., 78(2), (2008)
    • 10. Djukic, D.S.: Noether’s theorem for optimum control systems. Internat. J. Control 18, 667–672 (1973)
    • 11. Dunford, N., Schwartz, J. T.: Linear Operaiors. lnterscience Publishers, New York (1958)
    • 12. Evans, L. C.: An Introduction to Mathematical Optimal Control Theory. Version 0.2, University of California, Berkeley (2013)
    • 13. Frederico, G.S.F., Sousa, J Vanterler da C., Almeida, R.: Composition functionals in higher order calculus of variations and Noether’s...
    • 14. Frederico, G., Lazo,M.J., Barreto,M.N., Sousa, J.V.:Higher-orderNoether’s theorem for isoperimetric variational problems. J. Opt. Theory...
    • 15. Frederico, G.S.F., Odzijewicz, T., Torres, Delfim FM.: Noether’s theorem for non-smooth extremals of variational problems with time delay....
    • 16. Fractional conservation laws in optimal control theory: Frederico, G.S.F., Torres, DFM. Nonlinear Dyn. 53, 215–222 (2008)
    • 17. Frederico, G.S.F., Torres, D.F.M.: Noether’s symmetry Theorem for variational and optimal control problems with time delay. Numer. Algebra...
    • 18. Frederico, G.S.F., Sousa, J Vanterler da C., Babakhani, A.: Existence and uniqueness of global solution for a Cauchy problem and g-variational...
    • 19. Frederico, G.S.F., Giordano, P.,Bryxgalov, A.A., Lazo,M.J.: Calculus of variations and optimal control for generalized functions. Nonlinear...
    • 20. Frederico, G.S.F., Torres, D.F.M.: A formulation of Noether’s theorem for fractional problems of the calculus of variations. J. Math....
    • 21. Greenwood, D.A.: The Boltzmann equation in the theory of electrical conduction inmetals. Proc. Phys. Soc. 71(4), 585 (1958)
    • 22. Hestenes, M. R.: Calculus of variations and optimal control theory. John Wiley & Sons (1966)
    • 23. Hosseini, M., Babakhani, A., Agahi, H., Rasouli, S.H.: On pseudo-fractional integral inequalities related to Hermite-Hadamard type. Soft...
    • 24. Jackson, J. D.: Classical Electrodynamics. 2 John Wiley & Sons New York (1975)
    • 25. Kosmann-Schwarzbach, Y.: The Noether Theorems. Invariance and Conservation Laws in the Twentieth Century. Springer, Nova Iorque (2011)
    • 26. Logan, J.D.: Invariant variational principles, in Mathematics in science and engineering series; v, 138. Academic Press, New York, San...
    • 27. Maor, E.: A discrete model for the vibrating string. Inter. J.Math. Edu. Sci. Tech. 6(3), 345–352 (1975)
    • 28. Mattheij, R. M. M., Rienstra, S. W., Boonkkamp, J. H. M. T. T.: Partial Differential Equations: Modeling, Analysis, Computation. Soc....
    • 29. Noether, E.: Nachrichten von der gesellschaft der Wissenschaften zu Göttingen. Math. Phys. Klasse. 1918, 235 (1918)
    • 30. Noether, E.: Invariante Variationsprobleme, Nachr. d. König. Gesellsch. d. Wiss. zu Göttingen, Mathphys. Klasse, 235-257 (1918). English...
    • 31. Olver, P. J.: Applications of Lie groups to differential equations, 2. Graduate Textes in Mathematics, Springer-Verlag, (1993)
    • 32. Pap, E.: Pseudo-Additive Measures and their Applications. Handbook of Measure Theory. North- Holland pp. 1403–1468 (2002)
    • 33. Pap, E.: Applications of the generated pseudo-analysis to nonlinear partial differential equations. Contemp. Math. 377, 239–260 (2005)
    • 34. Pap, E.: Pseudo-analysis approach to nonlinear partial differential equations. Acta Polytech. Hung. 5(1), 31–45 (2008)
    • 35. Pap, E., Vivona, D.: Noncommutative and nonassociative pseudo-analysis and its applications on nonlinear partial differential equations....
    • 36. Pap, E., Strboja, M., Rudas, I.: Pseudo-L p space and convergence. Fuzzy Sets Syst. 238, 113–128 (2014)
    • 37. Ralevic, N.M., Nedovic, L., Grbic, T.: The pseudo-linear superposition principle for nonlinear partial differential equations and representation...

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno