Ir al contenido

Documat


Learning‑assisted optimization for transmission switching

  • Salvador Pineda [1] ; Juan Miguel Morales [1] ; Asunción Jiménez Cordero [1]
    1. [1] Universidad de Málaga

      Universidad de Málaga

      Málaga, España

  • Localización: Top, ISSN-e 1863-8279, ISSN 1134-5764, Vol. 32, Nº. Extra 3, 2024 (Ejemplar dedicado a: Mathematical Optimization and Machine Learning), págs. 489-516
  • Idioma: inglés
  • DOI: 10.1007/s11750-024-00672-0
  • Enlaces
  • Resumen
    • The design of new strategies that exploit methods from machine learning to facilitate the resolution of challenging and large-scale mathematical optimization problems has recently become an avenue of prolifc and promising research. In this paper, we propose a novel learning procedure to assist in the solution of a well-known computationally difcult optimization problem in power systems: The Direct Current Optimal Transmission Switching (DC-OTS) problem. The DC-OTS problem consists in fnding the confguration of the power network that results in the cheapest dispatch of the power generating units. With the increasing variability in the operating conditions of power grids, the DC-OTS problem has lately sparked renewed interest, because operational strategies that include topological network changes have proved to be efective and efcient in helping maintain the balance between generation and demand. The DC-OTS problem includes a set of binaries that determine the on/of status of the switchable transmission lines. Therefore, it takes the form of a mixedinteger program, which is NP-hard in general. In this paper, we propose an approach to tackle the DC-OTS problem that leverages known solutions to past instances of the problem to speed up the mixed-integer optimization of a new unseen model. Although our approach does not ofer optimality guarantees, a series of numerical experiments run on a real-life power system dataset show that it features a very high success rate in identifying the optimal grid topology (especially when compared to alternative competing heuristics), while rendering remarkable speed-up factors.

  • Referencias bibliográficas
    • Barrows C, Blumsack S, Bent R (2012) Computationally efficient optimal transmission switching: Solution space reduction. In: 2012 IEEE Power...
    • Bengio Y, Lodi A, Prouvost A (2021) Machine learning for combinatorial optimization: a methodological tour d’horizon. Eur J Oper Res 290(2):405–421....
    • Blumsack S (2006) Network topologies and transmission investment under electric-industry restructuring. Carnegie Mellon University, Pittsburgh,...
    • Bugaje A-AB, Cremer JL, Strbac G (2023) Real-time transmission switching with neural networks. IET Gener, Transm Distrib 17(3):696–705. https://doi.org/10.1049/gtd2.12698
    • Cappart Q, Chételat D, Khalil EB, Lodi A, Morris C, Veličković P (2023) Combinatorial optimization and reasoning with graph neural networks....
    • Cormen TH, Leiserson CE, Rivest RL, Stein C (2022) Introduction to Algorithms. MIT Press, Cambridge, Massachusetts
    • Crozier C, Baker K, Toomey B (2022) Feasible region-based heuristics for optimal transmission switching. Sustain Energy, Grids Netw 30:100628
    • Dey SS, Kocuk B, Redder N (2022) Node-based valid inequalities for the optimal transmission switching problem. Discret Optim 43:100683
    • Fattahi S, Lavaei J, Atamtürk A (2019) A bound strengthening method for optimal transmission switching in power systems. IEEE Trans Power...
    • Fisher EB, O’Neill RP, Ferris MC (2008) Optimal transmission switching. IEEE Trans Power Syst 23(3):1346–1355
    • Flores M, Macedo LH, Romero R (2020) Alternative mathematical models for the optimal transmission switching problem. IEEE Syst J 15(1):1245–1255
    • Fuller JD, Ramasra R, Cha A (2012) Fast heuristics for transmission-line switching. IEEE Trans Power Syst 27(3):1377–1386
    • Gurobi Optimization, LLC (2022) Gurobi Optimizer Reference Manual. https://www.gurobi.com
    • Han T, Hill D (2022) Learning-based topology optimization of power networks. IEEE Trans Power Syst 38(2):1366–78
    • Hastie T, Tibshirani R, Friedman JH, Friedman JH (2009) The Elements of Statistical Learning: Data Mining, Inference, and Prediction, vol...
    • Hedman KW, Oren SS, O’Neill RP (2012) Flexible transmission in the smart grid: optimal transmission switching. In: Handbook of Networks in...
    • Hinneck A, Pozo D (2022) Optimal transmission switching: improving exact algorithms by parallel incumbent solution generation. IEEE Trans...
    • Jiménez-Cordero A, Morales JM, Pineda S (2022) Warm-starting constraint generation for mixed-integer optimization: a machine learning approach....
    • Johnson ES, Ahmed S, Dey SS, Watson J-P (2021) A K-nearest neighbor heuristic for real-time DC optimal transmission switching. arXiv. arxiv:2003.10565
    • Joswig-Jones T, Zamzam A, Baker K (2021) OPFLearndata: Dataset for learning AC optimal power flow. Technical report, NREL Data Catalog. Golden,...
    • Kocuk B, Jeon H, Dey SS, Linderoth J, Luedtke J, Sun XA (2016) A cycle-based formulation and valid inequalities for DC power transmission...
    • Liu C, Wang J, Ostrowski J (2012) Heuristic prescreening switchable branches in optimal transmission switching. IEEE Trans Power Syst 27(4):2289–2290
    • Lodi A, Zarpellon G (2017) On learning and branching: a survey. Top 25:207–236
    • OASYS (2023) Learning_Assisted_Optimization_for_Transmission_Switching. https://github.com/group/oasys/Learning_Assisted_Optimization_for_Transmission_Switching
    • O’Neill RP, Baldick R, Helman U, Rothkopf MH, Stewart W (2005) Dispatchable transmission in RTO markets. IEEE Trans Power Syst 20(1):171–179
    • Parmentier A (2022) Learning to approximate industrial problems by operations research classic problems. Oper Res 70(1):606–623
    • Pineda S, Morales JM, Jiménez-Cordero A (2020) Data-driven screening of network constraints for unit commitment. IEEE Trans Power Syst 35(5):3695–3705....
    • Ruiz PA, Goldis E, Rudkevich AM, Caramanis MC, Philbrick CR, Foster JM (2016) Security-constrained transmission topology control MILP formulation...
    • Yang Z, Oren S (2019) Line selection and algorithm selection for transmission switching by machine learning methods. In: 2019 IEEE Milan PowerTech,...

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno