Ir al contenido

Documat


Integrability of Oscillators and Transcendental Invariant Curves

  • Jaume Giné [1] Árbol académico ; Dmitry Sinelshchikov [2]
    1. [1] Universitat de Lleida

      Universitat de Lleida

      Lérida, España

    2. [2] Ikerbasque, Fundación Vasca para la Ciencia

      Ikerbasque, Fundación Vasca para la Ciencia

      Bilbao, España

  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 24, Nº 1, 2025
  • Idioma: inglés
  • Enlaces
  • Resumen
    • In this work we study the integrability of a family of nonlinear oscillators. Dynamical systems from this family appear in different applications from mechanics to chemistry.

      We propose an approach for finding first integrals and integrating factors, which is based on the construction and classification of transcendental invariant curves whose cofactors are polynomial or rational in one of the variables. We demonstrate that this approach can be efficiently used for finding non-Liouvillian and non-Puiseux integrable dynamical systems. Its application involves finding solutions only of linear algebraic and linear ordinary differential equations. This allows one to study singularities, including essential ones, of the invariant curves in the complex plane. We illustrate this approach by proving non-Liouvillian integrability of two dynamical systems from the Painlevé–Gambier classification and non-Puiseux integrability of an oscillator from the considered family. Furthermore, we construct equivalence classes of the first two dynamical systems with respect to nonlocal transformations. We show that among these equivalence classes there are interesting examples of integrable dynamical systems.

  • Referencias bibliográficas
    • 1. Andronov, A.A., Vitt, A.A., Khaikin, S.E.: Theory of Oscillators. Dover Publications, New York (2011)
    • 2. Murray, J.D.: Mathematical Biology. I. An Introduction. Springer, Berlin (2001)
    • 3. Izhikevich, E.M.: Dynamical Systems in Neuroscience. MIT Press, Cambridge (2007)
    • 4. Jenkins, A.: Self-oscillation. Phys. Rep. 525, 167–222 (2013)
    • 5. Ghosh, S., Ray, D.S.: Chemical oscillator as a generalized Rayleigh oscillator. J. Chem. Phys. 139, 164112 (2013)
    • 6. Saha, S., Gangopadhyay, G.: Isochronicity and limit cycle oscillation in chemical systems. J. Math. Chem. 55, 887–910 (2017)
    • 7. Ishchenko, A.R., Sinelshchikov, D.I.: On an integrable family of oscillators with linear and quadratic damping. Chaos Solitons Fractals...
    • 8. Dumortier, F., Llibre, J., Artés, J.C.: Qualitative Theory of Planar Differential Systems. Springer, Berlin (2006)
    • 9. Zhang, X.: Integrability of Dynamical Systems: Algebra and Analysis. Springer, Singapore (2017)
    • 10. Llibre, J., Valls, C.: Liouvillian first integrals for Liénard polynomial differential systems. Proc. Am. Math. Soc. 138, 3229–3229 (2010)
    • 11. Kovacic, J.J.: An algorithm for solving second order linear homogeneous differential equations. J. Symb. Comput. 2, 3–43 (1986)
    • 12. Giné, J.: On the dynamics of Higgins-Selkov, Selkov and Brusellator oscillators. Symmetry (Basel) 14, 438 (2022)
    • 13. Giné, J., Valls, C.: On the dynamics of the Rayleigh-Duffing oscillator. Nonlinear Anal. Real World Appl. 45, 309–319 (2019)
    • 14. Giné, J., Valls, C.: Liouvillian integrability of a general Rayleigh-Duffing oscillator. J. Nonlinear Math. Phys. 26, 169–187 (2019)
    • 15. Giné, J., Sinelshchikov, D.I.: On the geometric and analytical properties of the anharmonic oscillator. Commun. Nonlinear Sci. Numer....
    • 16. Sinelshchikov, D.I.: Linearizability conditions for the Rayleigh-like oscillators. Phys. Lett. A 384, 126655 (2020)
    • 17. Sinelshchikov, D.: On an integrability criterion for a family of cubic oscillators. AIMS Math. 6, 12902– 12910 (2021)
    • 18. García, I.A., Giné, J.: Generalized cofactors and nonlinear superposition principles. Appl. Math. Lett. 16, 1137–1141 (2003)
    • 19. Garcia, I.A., Giné, J.: Non-algebraic invariant curves for polynomial planar vector fields. J. Discret. Contin. Dyn. Syst. 10, 755–768...
    • 20. Giné, J., Llibre, J.: Weierstrass integrability in Liénard differential systems. J. Math. Anal. Appl. 377, 362–369 (2011)
    • 21. Giné, J., Grau, M.: Weierstrass integrability of differential equations. Appl. Math. Lett. 23, 523–526 (2010)
    • 22. Demina, M.V., Giné, J., Valls, C.: Puiseux integrability of differential equations. Qual. Theory Dyn. Syst. 21, 1–35 (2022)
    • 23. Demina, M. V.: Novel algebraic aspects of Liouvillian integrability for two-dimensional polynomial dynamical systems. Phys. Lett. A. 382,...
    • 24. Giné, J., Valls, C.: Nonlinear oscillations in the modified Leslie-Gower model. Nonlinear Anal. Real World Appl. 51, 103010 (2020)
    • 25. Huang, K., Shi, S., Li, W.: Meromorphic non-integrability of several 3D dynamical systems. Entropy 19, 211 (2017)
    • 26. Szumi ´nski, W.: Integrability analysis of chaotic and hyperchaotic finance systems. Nonlinear Dyn. 94, 443–459 (2018)
    • 27. Szumi ´nski, W., Przybylska, M.: Differential Galois integrability obstructions for nonlinear threedimensional differential systems. Chaos...
    • 28. Huang, K., Shi, S., Li, W.: Integrability analysis of the Shimizu-Morioka system. Commun. Nonlinear Sci. Numer. Simul. 84, 105101 (2020)
    • 29. Kazakov, A.: Solutions to nonlinear evolutionary parabolic equations of the diffusion wave type. Symmetry (Basel) 13, 871 (2021)
    • 30. Zaitsev, V.F., Polyanin, A.D.: Handbook of Exact Solutions for Ordinary Differential Equations. Chapman and Hall/CRC, Boca Raton (2002)
    • 31. Ince, E.L.: Ordinary Differential Equations. Dover, New York (1956)
    • 32. Sinelshchikov, D.I.: On first integrals for some non-autonomous Lienard-type equations. In: AIP Conference Proceedings, p. 270009 (2019)
    • 33. Demina, M.V., Valls, C.: On the Poincaré problem and Liouvillian integrability of quadratic Liénard differential equations. Proc. R. Soc....
    • 34. Sinelshchikov, D.I.: On linearizability via nonlocal transformations and first integrals for second-order ordinary differential equations....
    • 35. Sinelshchikov, D.I.: Nonlocal deformations of autonomous invariant curves for Liénard equations with quadratic damping. Chaos Solitons...
    • 36. Sinelshchikov, D.I.: Linearizabiliy and Lax representations for cubic autonomous and non-autonomous nonlinear oscillators. Phys. D Nonlinear...
    • 37. Duarte, L.G.S., Moreira, I.C., Santos, F.C.: Linearization under nonpoint transformations. J. Phys. A Math. Gen. 27, L739–L743 (1994)
    • 38. Nakpim, W., Meleshko, S.V.: Linearization of second-order ordinary differential equations by generalized Sundman transformations. Symmetry...
    • 39. Singer, M.F.: Liouvillian first integrals of differential equations. Trans. Am. Math. Soc. 333, 673–688 (1992)
    • 40. Christopher, C.: Liouvillian first integrals of second order polynomial differential equations. Electron. J. Differ. Equ. 49, 1–7 (1999)
    • 41. Giné, J., Grau, M., Llibre, J.: On the extensions of the Darboux theory of integrability. Nonlinearity 26, 2221–2229 (2013)
    • 42. Seidenberg, A.: Reduction of singularities of the differential equation Ady = Bdx. Am. J. Math. 90, 248–269 (1968)
    • 43. Chavarriga, J., Giacomin, H., Giné, J., Llibre, J.: Local analytic integrability for nilpotent centers. Ergod. Theory Dyn. Syst. 23, 417–428...
    • 44. Giné, J., Santallusia, X.: Essential variables in the integrability problem of planar vector fields. Phys. Lett. A 375, 291–297 (2011)
    • 45. Bruno, A.D.: Power Geometry in Algebraic and Differential Equations. Elsevier, Amsterdam (2000)
    • 46. Bruno, A.D.: Asymptotic behaviour and expansions of solutions of an ordinary differential equation. Russ. Math. Surv. 59, 429–480 (2004)
    • 47. Whittaker, E.T., Watson, G.N.: A Course of Modern Analysis. Cambridge University Press, Cambridge (1927)
    • 48. Chudnovsky, D.V., Chudnovsky, G.V.: Computer assisted number theory with applications. In: Number Theory. Lecture Notes in Mathematics,...
    • 49. Bronstein, M., Mulders, T., Weil, J.A.: On symmetric powers of differential operators. In: Proceedings of the International Symposium...
    • 50. Almkvist, G., Van Straten, D., Zudilin, W.: Generalizations of Clausen’s Formula and algebraic transformations of Calabi-Yau differential...
    • 51. Olver, F.W.J., Lozier, D.W., Boisvert, R.F., Clark, C.W.: NIST Handbook of Mathematical Functions. Cambridge University Press, Cambridge...
    • 52. Bateman, H., Erdélyi, A.: Higher Transcendental Functions, vol. II. McGraw-Hill, New York (1953)
    • 53. Mathews, W.N., Esrick, M.A., Teoh, Z.Y., Freericks, J.K.: A physicist’s guide to the solution of Kummer’s equation and confluent hypergeometric...
    • 54. Abiowitz, M.J., Ramani, A., Segur, H.: A connection between nonlinear evolution equations and ordinary differential equations of P-type....
    • 55. Forsyth, A.R.: Theory of Differential Equations, Vol. IV, Part 3. Cambridge University Press, Cambridge (1959)
    • 56. Its, A.R., Novokshenov, V.Y.: The Isomonodromic Deformation Method in the Theory of Painlevé Equations. Springer, Berlin (1986)
    • 57. Ilyashenko, Y., Yakovenko, S.: Lectures on Analytic Differential Equations. American Mathematical Society, Providence (2008)
    • 58. Hernández-Bermejo, B., Fairén, V.: Lotka-Volterra representation of general nonlinear systems. Math. Biosci. 140, 1–32 (1997)
    • 59. Giné, J., Romanovski, V.G.: Linearizability conditions for Lotka-Volterra planar complex cubic systems. J. Phys. A Math. Theor. 42, 225206...
    • 60. Diz-Pita, É., Llibre, J., Otero-Espinar, M.V.: Phase portraits of a family of Kolmogorov systems with infinitely many singular points...

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno