Ir al contenido

Documat


Existence and Mass Collapse of Standing Waves for Equation with General Potential and Nonlinearities

  • Yu Su [1] ; Hongxia Shi [3] ; Jie Yang [2]
    1. [1] Anhui University of Science and Technology

      Anhui University of Science and Technology

      China

    2. [2] Huaihua University

      Huaihua University

      China

    3. [3] Hunan First Normal University
  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 24, Nº 1, 2025
  • Idioma: inglés
  • Enlaces
  • Resumen
    • We are concerned with the existence and mass collapse of standing waves with prescribed mass for the Schrödinger equation with general potential and nonlinearities. For local nonlinearities, this equation arises in the theory of Bose–Einstein condensates. For nonlocal nonlinearities, this equation is the Choquard euqation, which appears in the quantum theory of a polaron at rest. We used a unified approach (local minizing method) to study the existence of standing waves for the local, nonlocal and dipolar type cases. And then we established the mass collapse result.

  • Referencias bibliográficas
    • 1. Agrawal, G.: Nonlinear Fiber Optics. Academic Press (2007)
    • 2. Arbunich, J., Nenciu, I., Sparber, C.: Stability and instability properties of rotating Bose–Einstein condensates. Lett. Math. Phys. 109(6),...
    • 3. Ardila, A., Hajaiej, H.: Global well-posedness, blow-up and stability of standing waves for supercritical NLS with rotation. J. Dyn. Differ....
    • 4. Bartsch, T., Wang, Z.Q.: Existence and multiple results for some superlinear elliptic problems on RN . Commun. Partial Differ. Equ. 20,...
    • 5. Bellazzini, J., Boussaid, N., Jeanjean, L., Visciglia, N.: Existence and stability of standing waves for supercritical NLS with a partial...
    • 6. Cao, D., Feng, B., Luo, T.: On the standing waves for the X-ray free electron laser Schrödinger equation. Discrete Contin. Dyn. Syst. 42,...
    • 7. Cazenave, T., Lions, P.: Orbital stability of standing waves for some nonlinear Schrödinger equations. Commun. Math. Phys. 85, 549–561...
    • 8. Cingolani, S., Gallo, M., Tanaka, K.: Normalized solutions for fractional nonlinear scalar field equation via Lagrangian formulation. Nonlinearity...
    • 9. Cingolani, S., Gallo, M., Tanaka, K.: Multiple solutions for the nonlinear Choquard equation with even or odd nonlinearities. Calc. Var....
    • 10. Dinh, V.: Existence and stability of standing waves for nonlinear Schrödinger equation with a critical rotation speed. Lett. Math. Phys....
    • 11. Dolbeault, J., Frank, R., Jeanjean, L.: Logarithmic estimates for mean-field modelsin dimension two and the Schrödinger–Poisson system....
    • 12. Erdos, L., Schlein, B., Yau, H.: Derivation of the Gross–Pitaevskii hierarchy for the dynamics of Bose– Einstein condensate. Commun. Pure...
    • 13. Grillakis, M., Shatah, J., Strauss, W.: Stability theory of solitary waves in the presence of symmetry I. J. Funct. Anal. 74, 160–197...
    • 14. Hadj Selem, F., Hajaiej, H., Markowich, P., Trabelsi, S.: variational approach to the orbital stability of standing waves of the Gross–Pitaevskii...
    • 15. Jeanjean, L.: Existence of solutions with prescribed norm for semilinear elliptic equations. Nonlinear Anal. 28, 1633–1659 (1997). https://doi.org/10.1016/S0362-546X(96)00021-1
    • 16. Jeanjean, L., Le, T.: Multiple normalized solutions for a Sobolev critical Schrödinger–Poisson–Slater equation. J. Differ. Equ. 303, 277–325...
    • 17. Jeanjean, L., Lu, S.: A mass supercritical problem revisited. Calc. Var. Partial Differ. Equ. 59, 174 (2020). https://doi.org/10.1007/s00526-020-01828-z
    • 18. Lieb, E.: Existence and uniqueness of the minimizing solution of Choquard’s nonlinear equation. Stud. Appl. Math. 57(2), 93–105 (1976/77)....
    • 19. Lieb, E., Seiringer, R., Yngvason, J.: Bosons in a trap: a rigorous derivation of the Gross–Pitaevskii energy functional. Phys. Rev. A...
    • 20. Lieb, E., Loss, M.: Analysis, Graduate Studies in Mathematics, vol. 14. American Mathematical Society, Providence (1997)
    • 21. Lions, P.: The Choquard equation and related questions. Nonlinear Anal. 4(6), 1063–1072 (1980). https://doi.org/10.1016/0362-546X(80)90016-4
    • 22. Lions, P.: The concentration-compactness principle in the calculus of variations, the locally compact case, part 1. Ann. Inst. H. Poincaré...
    • 23. Luo, X., Yang, T.: Multiplicity, asymptotics and stability of standing waves for nonlinear Schrödinger equation with rotation. J. Differ....
    • 24. Pekar, S.: Untersuchung ber die elektronentheorie der kristalle, Akademie Verlag. Berlin (1954). https:// doi.org/10.1515/9783112649305
    • 25. Rabinowitz, P.: On a class of nonlinear Schrödinger equations. Z. Angew. Math. Phys. 43, 270–291 (1992). https://doi.org/10.1007/BF00946631
    • 26. Selem, F., Hajaiej, H., Markowich, P., Trabelsi, S.: Variational approach to the orbital stability of standing waves of the Gross–Pitaevskii...
    • 27. Soave, N.: Normalized ground states for the NLS equation with combined nonlinearities: The Sobolev critical case. J. Funct. Anal. 279,...
    • 28. Soave, N.: Normalized ground states for the NLS equation with combined nonlinearities. J. Differ. Equ. 269, 6941–6987 (2020). https://doi.org/10.1016/j.jde.2020.05.016
    • 29. Tao, T., Visan, M., Zhang, X.: The nonlinear Schrödinger equation with combined powertype nonlinearities. Commun. Partial Differ. Equ....
    • 30. Xia, J., Zhang, X.: Normalized saddle solutions for a mass supercritical Choquard equation. J. Differ. Equ. 364, 471–497 (2023). https://doi.org/10.1016/j.jde.2023.03.049
    • 31. Yao, S., Chen, H., Radulescu, V., Sun, J.: Normalized solutions for lower critical Choquard equations with critical Sobolev perturbations....

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno