Ir al contenido

Documat


A Qualitative Study for Two Discrete Fractional Delta Difference BVPs with Falling Functions: Application on the Temperature Control System

  • Reny George [1] ; Sina Etemad [3] ; Ibrahim Avcı [2] ; Fahad Sameer Alshammari [1]
    1. [1] Prince Sattam Bin Abdulaziz University

      Prince Sattam Bin Abdulaziz University

      Arabia Saudí

    2. [2] Cyprus International University

      Cyprus International University

      Chipre

    3. [3] Al-Ayen University, Azarbaijan Shahid Madani University
  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 24, Nº 1, 2025
  • Idioma: inglés
  • Enlaces
  • Resumen
    • Modeling of different processes and phenomena in real-world is one of the most important fields of the mathematics in which qualitative dynamics of such systems are studied from mathematical point of view. In this paper, we discuss the qualitative properties of solutions of a temperature control system in the context of a mathematical model in fractional discrete calculus. We discretize our supposed control system with the help of two delta sum and difference operators in the sense of the Caputo and Riemann–Liouville. By the existing properties of the falling functions, we obtain the equivalent difference formula corresponding to the given discrete delta difference boundary value problems of temperature control system. To conduct an analysis on solutions of this fractional system, the existence results are investigated via fixed points and the stability bahaviors are proved from the Ulam–Hyers point of view. In two applied examples, we use numerical data to simulate solutions of such discrete fractional delta boundary value problems of temperature control system.

  • Referencias bibliográficas
    • 1. Liouville, J.: Memoire sur quelques que stions de geometrie et de mecanique, et sur un nouveau genre de calcul pour resoudre ces questions....
    • 2. Debnath, L.: A brief historical introduction to fractional calculus. Int. J. Math. Educ. Sci. Technol. 35(4), 487–501 (2004)
    • 3. Antagana, A.: Mathematical model of survival of fractional calculus, critics and their impact: How singular is our world? Adv. Differ....
    • 4. Abbas, M.I., Ragusa, M.A.: On the hybrid fractional differential equations with fractional proportional derivatives of a function with...
    • 5. Mohammadi, H., Rezapour, S., Etemad, S., Baleanu, D.: Two sequential fractional hybrid differential inclusions. Adv. Differ. Equ. 2020,...
    • 6. Bonyah, E., Chukwu, C.W., Juga, M.L.: Fatmawati modeling fractional-order dynamics of syphilis via Mittag–Leffler law. AIMS Math. 6, 8367–8389...
    • 7. Rezapour, S., Ntouyas, S.K., Iqbal, M.Q., Hussain, A., Etemad, S., Tariboon, J.: An analytical survey on the solutions of the generalized...
    • 8. Kashuri, A., Agarwal, R.P., Mohammed, P.O., Nonlaopon, K., Abualnaja, K.M., Hamed, Y.S.: New generalized class of convex functions and...
    • 9. Khan, A., Shah, K., Abdeljawad, T., Alqudah, M.A.: Existence of results and computational analysis of a fractional order two strain epidemic...
    • 10. Etemad, S., Shikongo, A., Owolabi, K.M., Tellab, B., Avcı, ˙I, Rezapour, S., Agarwal, R.P.: A new fractal-fractional version of giving...
    • 11. Rezapour, S., Etemad, S., Avcı, ˙I, Ahmad, H., Hussain, A.: A study on the fractal-fractional epidemic probability-based model of SARS-CoV-2...
    • 12. Asamoah, J.K.K., Okyere, E., Yankson, E., Opoku, A.A., Adom-Konadu, A., Acheampong, E., Arthur, Y.D.: Non-fractional and fractional mathematical...
    • 13. Phuong, N.D., Sakar, F.M., Etemad, S., Rezapour, S.: A novel fractional structure of a multi-order quantum multi-integro-differential...
    • 14. Aydogan, S.M., Baleanu, D., Mohammadi, H., Rezapour, S.: On the mathematical model of Rabies by using the fractional Caputo–Fabrizio derivative....
    • 15. Zhu, C., Al-Dossari, M., Rezapour, S., Alsallami, S.A.M., Gunay, B.: Bifurcations, chaotic behavior, and optical solutions for the complex...
    • 16. Louati, H., Rehman, S., Imtiaz, F., AlBasheir, N.A., Al-Rezami, A.Y., Almazah, M.M.A., Niazi, A.U.K.: Securing bipartite nonlinear fractional-order...
    • 17. Chavez-Vazquez, S., Lavin-Delgado, J.E., Gomez-Aguilar, J.F., Raza-Hernandez, J.R., Etemad, S., Rezapour, S.: Trajectory tracking of Stanford...
    • 18. Khan, A., Niazi, A.U.K., Rehman, S., Ahmed, S.: Hostile-based bipartite containment control of nonlinear fractional multi-agent systems...
    • 19. Khan, A., Javeed, M.A., Rehman, S., Niazi, A.U.K., Zhong, Y.: Advanced observation-based bipartite containment control of fractional-order...
    • 20. Dehingia, K., Mohsen, A.A., Alharbi, S.A., Alsemiry, R.D., Rezapour, S.: Dynamical behavior of a fractional order model for within-host...
    • 21. Khan, A., Javeed, M.A., Niazi, A.U.K., Rehman, S., Zhong, Y.: Robust consensus analysis in fractionalorder nonlinear leader-following...
    • 22. Ahmad, M., Zada, A., Ghaderi, M., George, R., Rezapour, S.: On the existence and stability of a neutral stochastic fractional differential...
    • 23. Shah, A., Khan, R.A., Khan, A., Khan, H., Gomez-Aguilar, J.F.: Investigation of a system of nonlinear fractional order hybrid differential...
    • 24. Khan, H., Chen, W., Khan, A., Khan, T.S., Al-Madlal, Q.M.: Hyers–Ulam stability and existence criteria for coupled fractional differential...
    • 25. Khan, H., Tunc, C., Khan, A.: Green function’s properties and existence theorems for nonlinear singular-delay-fractional differential...
    • 26. Alkhazzan, A., Jiang, P., Baleanu, D., Khan, H., Khan, A.: Stability and existence results for a class of nonlinear fractional differential...
    • 27. Khan, H., Ahmed, S., Alzabut, J., Azar, A.T.: A generalized coupled system of fractional differential equations with application to finite...
    • 28. Khan, H., Abdeljawad, T., Gomez-Aguilar, J.F., Tajadodi, H., Khan, A.: Fractional order Volterra integro-differential equation with Mittag–Leffler...
    • 29. Diaz, J.B., Osler, T.J.: Differences of fractional order. Math. Comput. 28, 185–202 (1974)
    • 30. Granger, C.W.J., Joyeux, R.: An introduction to long-memory time series models and fractional differencing. J. Time Ser. Anal. 1, 15–29...
    • 31. Miller, K.S., Ross, B.: Fractional difference calculus. In: Proceedings of the International Symposium on Univalent Functions, Fractional...
    • 32. Atici, F.M., Sengul, S.: Modeling with fractional difference equations. J. Math. Anal. Appl. 369(1), 1–9 (2010)
    • 33. Gray, H.L., Zhang, N.F.: On a new definition of the fractional difference. Math. Comput. 50(182), 513–529 (1988)
    • 34. Abdeljawad, T.: On Riemann and Caputo fractional differences. Comput. Math. Appl. 62, 1602–1611 (2011)
    • 35. Song, T.T., Wu, G.C., Wei, J.L.: Hadamard fractional calculus on time scales. Fractals 30(07), 2250145 (2022)
    • 36. Wu, G.C., Song, T.T., Wang, S.: Caputo-Hadamard fractional differential equations on time scales: numerical scheme, asymptotic stability,...
    • 37. Goodrich, C.S.: Existence of a positive solution to a system of discrete fractional boundary value problems. Appl. Math. Comput. 217(9),...
    • 38. Ortigueira, M.D., Machado, J.T.: The 21st century systems: an updated vision of continuous-time fractional models. IEEE Circuits Syst....
    • 39. He, J.W., Zhang, L., Zhou, Y., Ahmad, B.: Existence of solutions for fractional difference equations via topological degree methods. Adv....
    • 40. Alzabut, J., Selvam, A.G.M., Dhineshbabu, R., Kaabar, M.K.A.: The existence, uniqueness, and stability analysis of the discrete fractional...
    • 41. Bourguiba, R., Cabada, A., Kalthoum, W.O.: Existence of solutions of discrete fractional problem coupled to mixed fractional boundary...
    • 42. Alzabut, J., Abdeljawad, T., Baleanu, D.: -Nonlinear delay fractional difference equations with applications on discrete fractional Lotka–Volterra...
    • 43. Chen, H., Jin, Z., Kang, S.: Existence of positive solution for Caputo fractional difference equation. Adv. Differ. Equ. 2015, 44 (2015)
    • 44. Selvam, A.G.M., Alzabut, J., Dhineshbabu, R., Rashid, S., Rehman, M.: Discrete fractional order twopoint boundary value problem with some...
    • 45. Selvam, A.G.M., Dhineshbabu, R.: Existence and uniqueness of solutions for a discrete fractional boundary value problem. Int. J. Appl....
    • 46. Zhang, L., Zhou, Y.: Existence and attractivity of solutions for fractional difference equations. Adv. Differ. Equ. 2018, 191 (2018)
    • 47. Infante, G., Webb, J.: Loss of positivity in a nonlinear scalar heat equation. Nonlinear Diff. Equ. Appl. 13, 249–261 (2006)
    • 48. Atici, F.M., Eloe, P.W.: A transform method in discrete fractional calculus. Int. J. Differ. Equ. 2, 165–176 (2017)
    • 49. Chen, H., Jin, Z., Kang, S.: Existence of positive solution for Caputo fractional difference equation. Adv. Differ. Equ. 2015, 44 (2015)
    • 50. Brouwer, L.E.J.: Uber Abbildunng von Mannigfaltigkeiten. Math. Ann. 71, 97–115 (1911)
    • 51. Chen, F., Zhou, Y.: Existence and Ulam stability of solutions for discrete fractional boundary value problem. Discrete Dyn. Nat. Soc....
    • 52. Selvam, A.G.M., Baleanu, D., Alzabut, J., Vignesh, D., Abbas, S.: On Hyers–Ulam Mittag–Leffler stability of discrete fractional Duffing...
    • 53. Abdeljawad, T., Alzabut, J.: On Riemann–Liouville fractional q-difference equations and their application to retarded logistic type model....

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno